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Abstract—Air-writing is a challenging task that combines
the fields of computer vision and natural language process-
ing, offering an intuitive and natural approach for human-
computer interaction. However, current air-writing solutions
face two primary challenges: (1) their dependency on complex
sensors (e.g., Radar, EEGs and others) for capturing precise
handwritten trajectories, and (2) the absence of a video-based air-
writing dataset that covers a comprehensive vocabulary range.
These limitations impede their practicality in various real-world
scenarios, including the use on devices like iPhones and laptops.
To tackle these challenges, we present the groundbreaking air-
writing Chinese character video dataset (AWCV-100K), serving
as a pioneering benchmark for video-based air-writing. This
dataset captures handwritten trajectories in various real-world
scenarios using commonly accessible RGB cameras, eliminating
the need for complex sensors. AWCV-100K includes 8.8 million
video frames, encompassing the complete set of 3,755 characters
from the GB2312-80 level-1 set (GB1). Furthermore, we introduce
our baseline approach, the video-based character recognizer
(VCRec). VCRec adeptly extracts fingertip features from sparse
visual cues and employs a spatio-temporal sequence module
for analysis. Experimental results showcase the superior per-
formance of VCRec compared to existing models in recognizing
air-written characters, both quantitatively and qualitatively. This
breakthrough paves the way for enhanced human-computer
interaction in real-world contexts. Moreover, our approach lever-
ages affordable RGB cameras, enabling its applicability in a
diverse range of scenarios. The code and data examples will
be made public at https://github.com/wmeiqi/AWCV.

Index Terms—Air-writing, real-world, benchmark, video-based
air-writing Chinese character recognition.

I. INTRODUCTION

WHEN you gesture with your fingertips to write charac-
ters in front of the camera, advanced artificial intelli-

gence technology instantly grasps your intentions and initiates
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Fig. 1. Comparing Our Work and Conventional Air-Writing in Real-World
Scenarios. Conventional air-writing relies on accurately captured handwritten
trajectories by complex sensors (such as Radar [1], Smart Watch [2], Leap
Motion [3], EEGs [4], IMU [5]), which impose significant limitations for
real-world scenarios (e.g., VR/AR/MR, iPhone, metaverse, GPT series [6]
and others). Mainstream real-world devices only incorporate standard RGB
cameras and require coverage of commonly used words for communication
purposes. To address these challenges, we propose a video-based air-writing
dataset with a comprehensive corpus (covering 99.7% of daily-used charac-
ters), AWCV-100K, captured by general cameras, and propose a VCRec for
sparse visual features and complex character structures.

the command execution. This concept, commonly referred
to as “finger in camera speaks everything”, epitomizes the
essence of air-writing as a powerful technique facilitating
effective human-computer interaction. It entails the recogni-
tion of characters from handwritten trajectories in 3D space,
resembling depictions seen in movies like Ready Player One.

As depicted in Fig. 1 (middle), air-writing holds broad
application prospects, such as its integration into popular smart
devices ( e.g., VR/AR/MR devices, Smart TV, Laptop, iPhone,
iPad ), enabling machines to interpret human intentions in a
contactless and silent manner. Specifically, air-writing can be
used in intelligent conversational systems (e.g., GPT series [6],
ChatGLM [7]) or the metaverse. Given the diverse nature
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of real-world scenarios, air-writing systems necessitate the
utilization of readily available sensors, such as RGB-based
cameras, and the inclusion of frequently used words for
effective communication.

However, conventional air-writing methods (Fig. 1 up-
per) [8], [9], [10], [11], [12], [13], [14], [15] relies on ac-
curately captured handwritten trajectories by complex sensors
(e.g., Radar [1], Smart Watch [2], Leap Motion [3], EEGs [4],
IMU [5] ), which are inflexible and challenging to seamlessly
integrate into popular smart devices. Moreover, the corpus of
some works [16], [17] could not cover commonly used words
for communications.

In order to overcome these limitations, we utilize common
RGB cameras to record videos of handwritten gestures, en-
abling practical implementation in real-world scenarios. We
create a video-based air-writing benchmark called AWCV-
100K, which consists of a vast collection of 8.8 million video
frames. This benchmark encompasses a comprehensive corpus,
encompassing 3,755 Chinese characters from the GB1 set,
representing 99.7% of characters commonly used in daily
communication [18].

Furthermore, we propose a simple yet effective two-stage
solution called the video-based character recognizer (VCRec)
(Fig. 1 lower) to tackle this challenging task. The key to
its success lies in leveraging sparse visual features, which
are commonly found in real-world applications due to low
frame rates. In the first stage, we introduce a fingertip feature
extractor to condense the sparse visual features into finger-
tip features. In the second stage, VCRec adopts a spatial-
temporal sequence module to model the character, capturing
temporal information from fingertip movements. Concurrently,
we employ a stroke graph attention network (StrokeGAT) to
represent the spatial structure of Chinese characters, enhancing
the utilization of sparse visual features.

Finally, we include comprehensive quantitative and quali-
tative evaluations on the AWCV-100K benchmark, compar-
ing our approach to existing models in the field of video-
based air-writing. Through extensive experimental analysis, we
demonstrate that our approach outperforms conventional state-
of-the-art (SOTA) methods, achieving a 4.92% improvement in
recognition accuracy on the constructed AWCV-100K dataset.

In general, the main contributions of this paper can be
summarized as follows:

• AWCV-100K Introduction: Presented the pioneering
video-based air-writing dataset with comprehensive cor-
pus, AWCV-100K, comprising 8.8 million frames and
3,755 Chinese characters, addressing limitations by uti-
lizing general RGB cameras for real-world applications.

• VCRec Model Proposition: Introduced VCRec, a two-
stage character recognition model leveraging sparse vi-
sual features, achieving improved accuracy in air-writing.

• Performance Enhancement: Through extensive analy-
sis, demonstrated a significant 4.92% accuracy improve-
ment over existing methods on the AWCV-100K, advanc-
ing effective human-computer interaction in real-world.
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Fig. 2. Comparison between AWCV-100K with other benchmarks.
Phonogram-based (e.g., VBFR [19], VBHR [20], AWR [9], WiFi [21],
FDT [16], WiTA [17]) and logogram-based benchmarks are selected for
overall comparison. The bubble diameter is proportional to the total frames
of the benchmark, and the vertical represents the coverage rate of daily-
used characters in each benchmark. Obviously, the proposed AWCV-100K
is the first logogram-based video dataset with a comprehensive corpus, more
participants, and more complex characters.

II. RELATED WORKS

A. Air-Writing Datasets

Numerous air-writing systems have emerged as a new
and intriguing research topic in the field of human-computer
interaction, integrating various types of sensors in recent
years. Depending on the type of sensor employed, air-writing
datasets can be categorized into two main groups: trajectory-
based datasets collected by complex sensors and video-based
datasets collected by general cameras.
Trajectory-based Datasets. They were collected by complex
sensors (e.g., Radar [1]), data gloves [22], [23], [24], [25],
hand motion sensors [26], [9], SmartWatch [2], Wifi [27],
Leap Motion [3], EEGs[4], IMU [5], which acquired precise
trajectories of air-writing. Kumar et al. [28] proposed a 3D
English text air-writing system based on Leap Motion, col-
lecting 560 sentences from 10 participants. However, most of
them were not available. Qu et al. [13] introduced IAHCC-
UCAS2016, a trajectory-based air-writing Chinese character
dataset. Gan and Wang [29] proposed IAHEW-UCAS2016,
a trajectory-based English word air-writing dataset. Gan et
al. [30] proposed IAHCT-UCAS2018, a trajectory-based air-
writing Chinese text dataset. These were public trajectory-
based air-writing datasets collected by Leap Motion. With the
introduction of public trajectory-based air-writing datasets, air-
writing systems based on complex sensors have made some
progress. However, due to their high cost and the difficulty of
integrating these complex sensors into existing systems, this
poses a challenge for their application in real-world scenarios.
Video-based Datasets. Video-based Datasets were collected
by cameras (e.g., Kinect [31], general RGB camera). Zhang
et al. [8] presented a small video-based air-writing dataset that
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Fig. 3. Examples of AWCV-100K. The figure shows a comparison of data under different lighting intensities and backgrounds. On the left of the figure
are the video frames of datasets, and on the right are the labels of datasets. The blue circles represent overexposure due to strong illumination and the red
box represents motion blur. (TOP) Data is collected under complex backgrounds and strong lighting conditions. (BOTTOM) Data is collected under simpler
backgrounds and weaker lighting conditions.

utilized Kinect sensors. Unlike complex and expensive sensors,
RGB cameras do not require physical contact, making them
a convenient and cost-effective option. As shown in Fig. 2,
we have summarized video-based air-writing datasets based on
participant count, vocabulary categories, and the coverage rate
of daily-used characters. VBFR [19], VBHR [20], FDT [16]
had collected air-writing video datasets for English lowercase
letters but have not accessed them. Kim et al. [17] introduced
an English and Korean video-based air-writing dataset (WiTA),
which was accessed. However, the corpora of the previous
datsets did not achieve a coverage rate of over 95% for
‘commonly used words’, constraining research methodologies
for real-world applications. Moreover, there hasn’t been a
video-based air-writing dataset focusing on logograms in the
past, hindering general air-writing system developing.

B. Air-Writing Recognition Models

Most conventional air-writing recognition methods heavily
rely on precise handwritten trajectories. For instance, Zhang
et al. [8] utilized Kinect sensors for fingertip tracking, en-
abling controller-free motion tracking. Their system primarily
focused on recognizing characters using the modified quadratic
discriminant function (MQDF) classifier. In another approach,
Kumar et al. [28] segmented each text into individual words
and employed an LSTM-CTC structure for word recogni-
tion. Similarly, Gan and Wang [14] applied an LSTM-based
sequence-to-sequence model for word recognition, achieving
performance comparable to previous state-of-the-art methods.
Gan et al. [32] revolutionized character representation by
adopting skeleton graphs and introducing PyGT, a specialized
transformer-convolutional network fusion. Furthermore, Wu et

al. [33] introduced the attention convolutional loop network
(ACRN), utilizing 1DCNN feature extraction followed by
LSTM multi-head attention mechanism classification. Their
experiments on CASIA-OLHWDB2.0-2.2 [34] and IAHCT-
UCAS2018 [30] demonstrated higher recognition accuracy.

Recently, video-based air-writing was proposed by Kim et
al. [17], introducing residual network architectures inspired by
3D ResNet. Additionally, Tan et al. [35] proposed transformer
architectures for air-writing recognition. However, these meth-
ods did not particularly focus on the visual semantics and
spatial features of fingertips, which led to lower performance.

C. Fingertip Detection and Tracking

In the realm of human-computer interaction (HCI), fingertip
detection and tracking have been explored. Initially, Liang et
al. [36] employed palm-to-hand outline distance measures for
fingertip identification, further refined [37] using the hand’s
natural structure. However, challenges persisted with segmen-
tation quality due to reliance on cues like color, depth, and
motion [8]. Preceding these methods were model-based 3D
gesture tracking approaches [38], [39], though these demanded
significant computational resources and ample training data,
limiting their real-time applicability. Contrastingly, MediaPipe,
an open-source gesture recognition framework, offered real-
time detection of 21 key point coordinates across various
platforms, achieving impressive frame rates like 909 FPS on
the iPhone 11, with a mean square error of 9.817mm [40],
[41]. Recently, in the field of visual object tracking, researchers
have devised various strategies such as dynamic attention-
guided multi-trajectory methods [42], dynamic feature assign-
ment frameworks like DFAT [43], occlusion-aware networks
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Fig. 4. More Complex and Comprehensive Corpus. The figure shows the characteristics of AWCV-100K. (A) Phonograms are composed of letters and easy to
identify (i.e., “ship” consists of the letters “s,h,i,p” ). Logograms are described as having one pinyin corresponds to multiple characters. Each character
is made up of parts, which can be further divided into strokes (i.e., pinyin “chuan” with yellow numbers representing the stroke order). (B) Successive
frames represent a stroke (i.e., the first two frames of the video correspond to the first stroke in figure), which are collected by general camera under cluttered
background and natural light. (C)The stroke distributions of GB1 and AWCV-100K respectively.

like SiamON [44], and the Siamese-based Twin Attention
Network [45], alongside simplified long-term tracking [46],
which could bolster gesture recognition and improve object
manipulation by complementing existing fingertip detection
and tracking methods.

III. AWCV-100K DATASET

Mainstream real-world devices typically utilize standard
RGB cameras and necessitate comprehensive coverage of
commonly used words for effective communication. To tackle
these challenges, we introduce AWCV-100K, a pioneering
video-based air-writing dataset designed for real-world ap-
plications. This extensive dataset is collected using general
cameras and involves a large number of participants.

A. Data Collection

We have utilized an air-writing platform for data acquisition.
Initially, we have briefed the participants on the data collection
procedure. They have been instructed to assume that a perfect
AI system would decode their air-writing, encouraging them

to write as naturally as possible. Each participant has then
composed approximately 500 words in Chinese, resulting
in a total collection of 102,688 videos. During each data
collection session, participants have had the flexibility to
adjust the camera view, accommodating different angles and
positions. The image sequences have been derived from real-
time recorded videos at 30 frames per second (FPS). The
examples of AWCV-100K are shown in Fig. 3.

B. Checkout Flow

We have implemented a stringent data review process to up-
hold the benchmark’s quality. Trained professional collectors
understand the nuances of the air-writing task and undertake
preliminary work with a self-inspection process. Subsequently,
verifiers conduct a second-round review of the collected data.
Finally, authors make the ultimate judgment whether to accept
or reject the data in the third-round confirmation. Any rejection
during self-check, verification, or data acceptance necessitates
recollection. We believe this three-round verification mecha-
nism ensures the generation of a high-quality dataset.
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TABLE I
SUMMARY OF THE PARTICIPANT INFORMATION STATISTICS. STATISTICS
ARE GATHERED ON PARTICIPANTS’ AGE, GENDER, HANDEDNESS, AND

HAND SIZE.

Metric Type Value

Gender
Male 145/211
Female 66/211
Neutral 0/211

Age
Range 20 - 30
Average 23.33
s.t.d. 1.39

Comfort-Hand
Left 1/211
Right 210/211
Both 0/211

Hand Width
[6cm, 8cm] 67/211
(8cm, 10cm] 140/211
> 10cm 24/211

Hand Length

[15cm, 17cm] 15/211
(17cm, 19cm] 60/211
(19cm, 20cm] 131/211
> 20cm 5/211

C. Challenge Attributes

Sparse Visual Features. In real-world scenarios, mainstream
devices only incorporate standard RGB cameras. In order
to be more widely applicable in the real-world, we collect
datasets by general RGB cameras, as illustrated in Fig. 4 (B).
However, compared to sophisticated sensors (such as Leap
Motion, which operates at 120FPS), general cameras often
capture fewer frames per second (e.g., 30FPS), resulting in
the acquisition of relatively sparse features.
More complex corpus. Phonograms usually consist of only a
few dozen letters (e.g., English has 26 letters, German has
27, Russian has 33, etc.). Logograms, on the other hand,

comprise thousands of characters (e.g., Chinese has 3,755
characters only in the GB1 set, etc.). However, previous video-
based air-writing datasets focused on phonograms and did
not include a comprehensive corpus (a corpus vocabulary size
achieving a coverage rate of over 95% for ‘commonly used
words’). To bridge this gap, we have constructed AWCV-100K
with a comprehensive logogram corpus. It includes 3,755
Chinese characters from the GB1 set, encompassing 99.7% of
characters used in daily communication [18], forming a com-
prehensive corpus. As shown in Fig. 4 (A), Chinese characters
have complex structures, which are composed of multiple
parts, each consisting of many strokes. The stroke distributions
of GB1 and AWCV-100K are shown in Fig. 4 (C), which
refers the stroke number of character is various. Moreover,
Chinese characters are formed in various ways, resulting in
highly intricate structures. These factors have presented greater
challenges for video-based air-writing recognition.

More Various Environments. As shown in Fig. 5, we have
collected data in various environments, encompassing dif-
ferent lighting conditions (e.g., artificial light, natural light,
and a combination of both) and backgrounds (e.g., a neat
background and a cluttered background) to ensure robustness
against real-world scenario variations. Additionally, during
data collection, we specifically have focused on capturing data
under diverse weather conditions and at different times of the
day (morning, afternoon, evening) to more accurately simulate
natural light variations in real-world environments. Further-
more, participants have been allowed to adjust their seats,
cameras, etc. We have varied viewpoints (camera distance,
angle, and position) during different data collection processes
to enhance the diversity of AWCV-100K.

More Participants. As depicted in Table I, which summa-
rizes participant statistics, we have recruited a total of 211
individuals (male: 145, female: 66), who are native Chinese
speakers proficient in both reading and writing. Participants’
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TABLE II
COMPARISON OF DATASETS. THE PROPOSED AWCV-100K DATASET IS THE MOST COMPREHENSIVE AND PROVIDES RICH TYPES OF DATA INSTANCES.
OUR DATASET SUPPLIES VIDEOS CONTAINING SEMANTIC TEXT WRITTEN IN THE AIR, WHICH CAPTURES THE INTERDEPENDENCE BETWEEN GESTURES
FOR DIFFERENT CHARACTERS. ( CRD, SEM, K, E, C, AND N IN THE TABLE STAND FOR INCLUSION OF COVERAGE RATE OF DAILY-USED CHARACTERS,

SEMANTIC WORDS, KOREAN, ENGLISH, CHINESE, AND NUMBERS, RESPECTIVELY.)

Dataset Year People Frames CRD Sem Language Sensor Illumination Access

VBFR [19] 2007 69 - - - E RGB - -
VBHR [20] 2012 21 - - - E RGB - -
ANWE [8] 2013 - 44,522 - - ECN Depth - -
AWR [9] 2015 22 - - ✓ E Motion - -
PGEI [10] 2016 24 93,729 - - EC Depth - -
WiFi [21] 2018 5 - - - E WiFi - -
FDT [16] 2019 5 - - - EN RGB - -
WiTA [17] 2021 122 1,757,307 89.9% ✓ EK RGB - ✓

AWCV-100K (Ours) 2023 211 8,819,068 99.7% ✓ C RGB ✓ ✓

hand lengths have ranged from 15.7 cm to 22.5 cm (M=18.29
cm, SD=1.05 cm), and their hand widths have ranged from
6.1 cm to 10.5 cm (M=8.16 cm, SD=0.73 cm). The diverse
hand sizes and writing styles among numerous participants
pose challenges to the accuracy of video-based air-writing
recognition.
Others. As depicted in Fig. 3, rapid fingertip movements
resulting in motion blur and problems arising from excessive
illumination create hurdles in acquiring precise trajectory
features. These issues specifically affect the image’s sharpness
and contours, adding complexity to the recognition process.

D. Dataset Comparison.
Table II presents a summary of the air-writing datasets

collected in this study, comparing them with previous studies
and highlighting the significant advantages of our dataset. (1)
Originality: Our dataset stands as the sole publicly accessible
study focusing on logograms, offering invaluable support for
research into video-based air-writing in real-world scenarios.
(2) Comprehensiveness: Our dataset achieves comprehensive
coverage of the Chinese corpus by encompassing all characters
of the GB1 set. In contrast, other datasets primarily concen-
trate on phonograms and provide limited coverage via select
word videos, posing challenges in real-world applications. (3)
Authenticity and Diversity: Our dataset spans a wide array of
acquisition dimensions necessary for real-world applications,
including scenes captured with general cameras. Additionally,
we encompass diverse environments and various illuminations
to closely mimic realistic scenarios. Moreover, by incorpo-
rating participants with diverse hand sizes and writing styles,
our dataset mirrors the diversity among users. These elements
present significant challenges while providing researchers with
invaluable insights to study algorithm robustness in real-world
scenarios.

E. Evaluation Protocol
To measure the recognition performance, both the correct

rate (CR) and the accurate rate (AR) are used as the perfor-
mance metrics, defined in the ICDAR 2013 Chinese hand-
writing recognition competition [47]. Specifically,

CR = (Nt −De − Se) /Nt, (1)

AR = (Nt −De − Se − Ie) /Nt, (2)

where Nt is the total number of characters in the test
ground-truth sentences, while De, Se, Ie denote deletion error,
substitution error, and insertion error, respectively, between
predictions and test ground-truth sentences. Additionally, in
this paper, the sequence length of characters is set to 1.

IV. METHODOLOGY

A. Overview

As shown in Fig. 6, we propose the Video-based Character
Recognizer (VCRec), a two-stage method that is simple yet
effective in addressing sparse visual features. The video ini-
tially undergoes adaptive fingertip feature extraction via the
fingertip feature extractor (Sec. IV-B). Subsequently, these
adaptive fingertip features are processed within the spatio-
temporal sequence module (Sec. IV-C), where they are en-
coded to extract intrinsic characteristics along two distinctive
dimensions. More specifically, the temporal feature encoder
captures temporal aspects of the fingertip, while the spatial
feature encoder handles the fingertip’s spatial features. Finally,
the decoder decodes the fusion features into the character.

B. Fingertip Feature Extractor

Due to the low frame rate in real-world scenarios, the key
lies in utilizing sparse visual features. To address this chal-
lenge, we introduce a Fingertip Feature Extractor to compress
sparse visual features into fingertip features. As shown in
Fig. 7, the video is first inputted by the Fingertip Tracker [40],
[41] to obtain fingertip trajectories and encoded into fingertip
features by Fingertip Representation.

We represent each trajectory with its derivatives including
the offsets of positions and the writing directions rather than
its raw absolute coordinates, which can effectively describe the
next movement of strokes. As shown in Fig. 7, the following
representations are calculated for the t-th point (pt, qt, st) of
the trajectory: (1) the offsets of XY-coordinates, ∆p and ∆q;
(2) the cosine and sine of the writing direction α; (3) the
cosine and sine of the curvature β; (4) the change of the stroke
identity. As a result, each point (pt, qt, st) is represented as
an eight-dimensional vector xt at time step t, t ∈ Z, i.e.,
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Fig. 6. Overview of the Video-based Character Recognizer (VCRec). The VCRec comprises a Fingertip Feature Extractor, a Spatio-Temporal Sequence
Module that encompasses both Temporal Feature Encoder and Spatial Feature Encoder, as well as a CTC Decoder.
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Fig. 7. Fingertip Feature Extractor. The video is first inputted by the Fingertip
Tracker to obtain fingertip trajectories and encoded into fingertip features by
Fingertip Representation.

xt = [∆pt,∆qt, sinα, cosα, sinβ, cosβ,

I (st = st+1) , I (st ̸= st+1)] .
(3)

C. Spatio-Temporal Sequence Module

The Spatio-Temporal Sequence Module encodes the finger-
tip features of the character into probabilities as:

p = fc(fg(fr(x)), fr(x)), (4)

where x is the fingertip features predicted by the Fingertip
Feature Extractor, fr is the Temporal Feature Encoder, fg is
the Spatial Feature Encoder, and fc is a decoder head that
maps the deep feature into the character probabilities p. During
training, the cross-entropy loss supervises p. During inference,
the character with the highest probability is selected as the
prediction.
Temporal Feature Encoder is uniquely tailored for encoding
the temporal information of the fingertip feature sequences,
utilizing mainly 1D convolution operators. As shown in Fig. 8,
Temporal Feature Encoder is constructed as a hierarchical
framework, which is primarily composed of ReduceBlock and
NormalBlock inspired by Gan et al. [14]. Both types of conv-
blocks utilize the techniques, like the residual connection [48],
batch normalization [49], dropout [50], and parametric recti-
fied linear unit (PReLU) [51], to speed up the network training
and also address the over-fitting problem. The ReduceBlock,
contains an extra convolution branch to adopt the residual
connection when the numbers of input and output channels are
different; if the convolution stride is set to 2, the ReduceBlock
will downsample the sequence over the time dimension to
increase the receptive field of the convolution.

Through Temporal Feature Encoder, the fingertip feature
sequence is encoded by Z = fr(x), Z = [z1, z2, · · · , zl]T,Z ∈
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Fig. 9. Spatial Feature Encoder. It models the spatial structure of the character
through a graph attention network, we have named it StrokeGAT.

Rl×c, where l represents the length of feature in the time
dimension and {zi}i∈1,2··· ,l are the features of different clips
of the fingertip trajectory.

Spatial Feature Encoder is used to encode the spatial infor-
mation of the fingertip feature sequences based on feature Z.
As shown in Fig. 9, by treating the features of different clips
of the trajectory (i.e., {zi}i∈1,2··· ,l) as the graph nodes, the
Spatial feature encoder models the spatial structure of the char-
acter through a graph attention network [52], we have named
it StrokeGAT. Through StrokeGAT, the temporal feature Z
is encoded by Z = fg(Z), where Z = [z1, z2, · · · , zl]T,Z ∈
Rl×c.

Specifically, the decoder head is used to add the tempo-
ral features and spatial features of the fingertip movement
trajectory and map them into probabilities of characters. To
achieve a faster inference speed, we simply add the two types
of features and then utilize a single-layer fully connected
layer to map the feature to p, i.e., p = fc(Z ⊕ Z) =
FC( 1l

∑l
i=1[z

T
i ⊕ zT

i ]), where FC and [⊕] denote the fully
connected layer and add operator respectively.
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Video Character Video CharacterFingertip 
Features

(A) One-Stage (B) Two-Stage

Fig. 10. Architectures of Air-Writing Recognition Method. (A) The one-stage
method refers to encoding the features of the video and then decoding the
characters. (B) The two-stage method refers to first extracting the fingertip
trajectories, and then encoding the fingertip trajectories. Finally, decode the
characters.

V. EXPERIMENTS

A. Datasets

Our proposed baseline method VCRec underwent com-
parisons across the following datasets: the video-based air-
writing datasets AWCV-100K (Ours), WiTA [17], and the
trajectory-based air-writing datasets IAHCC-UCAS2016 [12]
and IAHEW-UCAS2016 [29].
AWCV-100K is a video-based air-writing Chinese character
dataset, including 102,688 videos and comprising a total of 8.8
million video frames. The benchmark includes 3,755 Chinese
characters from the GB1 set, encompassing 99.7% of charac-
ters used in daily communication, forming a comprehensive
corpus. To ensure the developed model is robust to variations
among different individuals, we have partitioned the dataset
into three sets (i.e., training, validation, and testing) in an
approximate ratio of 8:1:1, dividing the data by person.
WiTA [17] is a video-based air-writing photogram dataset.
Only the English portion was used in this experiment, which
included 10,620 video sequences from 122 participants. The
data were sourced from an RGB camera with a frame rate of
29 fps, and all video frames were converted to 224×224 pixel
images.
IAHCC-UCAS2016 [12] is a public trajectory-based air-
writing Chinese character dataset, where each character is writ-
ten in the midair within a single stroke. The dataset contains
431,825 samples of 3,755 different Chinese characters.
IAHEW-UCAS2016 [29] is a public large-vocabulary
trajectory-based air-writing English word dataset. The dataset
is contributed by 324 different participants and contains
150,480 recordings covering 2,280 English words.

B. Implementation Details

The experiment utilizes a Spatio-Temporal Sequence Mod-
ule with a dropout probability of 0.2 in each conv-block and
fully connected layer to ensure generalization. As shown in
Fig. 9, N is 1, that is, one graph attention layer is used.
n is 8, that is, using the 8-head self-attention mechanism.
The proposed architecture is implemented using PyTorch [53]
and initialized with default parameters after resizing images
to 112 × 112. Optimization is achieved using the Adam [54]
algorithm with a mini-batch size of 8. The initial learning
rate is set to 0.001 and is decreased by a factor of 0.01
when recognition performance plateaus. The experiments are
conducted on 4 NVIDIA TITAN RTX 24G GPUs.

TABLE III
RESULTS OF DIFFERENT METHODS ON AWCV-100K.

Method Architecture AR(%) ↑ Params(M) ↓ FPS ↑

CNN+LSTM [55] 3.31 43.2 20.2
TwoStream [55] 5.64 62.6 48.7
C3D [55] 4.71 93.3 30.3
ST-MC [17] 14.25 17.5 272.9
ST-rMC [17] 16.02 52.4 306.7
ST-R(2+1)D [17] 4.51 52.4 126.3
ST-R3D [17]

CNN/RNN

23.40 55.4 168.7

One Stage

ViT [56] Transformer 21.51 86.7 16.9

Two Stage VCRec (Ours) CNN+GAT 52.43 3.9 88.2

TABLE IV
RESULTS OF DIFFERENT ST METHODS ON AWCV-100K. S REPRESENTS

THE SPATIAL FEATURE ENCODER AND T REPRESENTS THE TEMPORAL
FEATURE ENCODER.

Method ST AR(%) ↑ Params(M) ↓
1D-TCRN [30] T 45.31 5.6
LSTM [57] T 43.23 6.5
1DCNN [58] T 47.51 1.1
Transformer [59] T 40.11 36.2

VCRec (Ours) ST 52.43 3.9

C. Results and Analysis

Comparison of Different Architectures. As shown in Fig. 10,
methods are categorized into two groups based on their
utilization of fingertip features: one-stage (not using fingertip
features) and two-stage (using fingertip features). For video-
based air-writing recognition tasks, one-stage methods (e.g.,
ST-R3D, ST-(2+1)D [17]) encode the video frames directly
for character recognition. To address sparse visual features,
we first propose the two-stage architecture, which refers to
extracting the fingertip features from sparse visual features and
then encoding the fingertip features for character recognition.

Table III illustrates the performance of different model
architectures on the AWCV-100K dataset. For the one-stage
architecture, aside from ST-R3D [17], we have conducted
experiments with various classic architectures (e.g., C3D [55],
TwoStream [55] and so on) used for modeling video se-
quences. Additionally, we have also utilized the ViT archi-
tecture. Several insights can be derived from these findings.
Our proposed two-stage method significantly outperforms the
one-stage approach, highlighting the crucial importance of
fingertip features in air-writing recognition. Compared with
ST-R3D [35], the previous SOTA method in video-based air-
writing, VCRec (Ours) enhances accuracy by 29.03% on
the AWCV-100K dataset. ViT architecture has been not very
effective, possibly because the transformer architecture empha-
sizes global features but struggles to focus on specific visual
characteristics. In the case of air-writing, effectively capturing
visual features is particularly challenging due to their sparsity,
thus leading to difficulty in achieving optimal performance.
Comparison of Different Spatio-Temporal Sequence Mod-
ules. As shown in Fig. 11, we design different Spatio-Temporal
Sequence Module architectures. Fig. 11 (A) is the first struc-
ture without a spatial feature encoder. Fig. 11 (D) is the
structure of VCRec (Ours). We conduct some experiments
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Fig. 11. Feature Fusion Strategy. (B), (C) and (D) are three different architectures of feature fusion strategies. (A) is the model without a Spatial Feature
Encoder.

TABLE V
RESULTS OF DIFFERENT FEATURE FUSION STRATEGIES ON

AWCV-100K. A, B, C, AND D CORRESPOND TO THE FOUR DIFFERENT
STRUCTURES IN FIG. 11.

Feature Fusion Strategy AR(%) ↑ Params(M) ↓
A 47.51 1.1
B 48.19 3.7
C 51.77 3.9

D(Ours) 52.43 3.9

shown in Table IV. The Transformer model we’re using has
2 heads. The character recognition accuracy of the VCRec
(Ours), is significantly better than that of the other two-
stage methods, which proves that the spatial structure of the
character is very important. Our preliminary exploration of
modeling the spatial structure of characters has achieved good
results. Compared with the temporal model, VCRec (Ours)
has a 4.92% performance improvement.

Moreover, we have designed three different spatio-temporal
feature fusion strategies, depicted in Fig. 11 as (B), (C), and
(D). We conduct the relevant experiments for these feature
fusion strategies on AWCV-100K, and the results are shown
in Table V. Among them, comparing A, B, C and D have better
accuracy, which shows the importance of modeling character
structures. Comparing B, C and D behave better, which shows
that higher-level features are more effective when modeling
character structures by spatial feature encoder. Compared with
C and D, D achieves the SOTA, which shows that it is more
effective to apply structural information directly to stroke
features.
Visual Analysis of VCRec. The analysis of Fig. 12 unveils
a compelling relationship between the intricacy of characters
and the corresponding response within the StrokeGAT feature
map. As depicted in the lower section of the figure, char-
acters exhibiting higher complexity appear to induce a more
pronounced and intensified response in the StrokeGAT feature
map located in the upper part.

This correlation signifies StrokeGAT’s remarkable ability to
capture and represent the intricate web of stroke connections

自 Stroke:6 煮Stroke:12 醒Stroke:16

More complex character structure and more strokes

（A） （B） （C）

Fig. 12. The Visualization of StrokeGAT. (A), (B) and (C) represent three
different characters. From left to right, the character structure becomes more
complex and the number of strokes increases. (TOP) The visualization of
character features through the StrokeGAT, the brighter the color, the closer the
dependency between the features. (BOTTOM) Character and its stroke count,
where the circle part corresponds to the highlighted part in the visualization.

inherent in various characters. The heightened highlighting
observed in the feature map suggests that StrokeGAT excels
in discerning and emphasizing these intricate stroke patterns,
providing a deeper insight into the structural composition of
characters.

D. Ablation Study

Comparison of Different Temporal Feature Encoder. We
conducted ablation studies on the Temporal Feature Encoder,
as detailed in Table VI. In the 4th row, we observed a
significant decline in performance when the Temporal Feature
Encoder was not utilized, resulting in a 12.76% lower perfor-
mance compared to our method. Comparing the experimental
results in rows 1-3 and our method, it is evident that 1DCNN
excels in modeling temporal sequences.
Character Structure Model. In our quest to address sparse
visual features, our focus delved into character spatial struc-
tures, leading to the proposition of the Spatial Feature Encoder
strokeGAT. Given the significant strides of graph convolutional
networks (GCN) in handling diverse unstructured data, our
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TABLE VI
RESULTS OF DIFFERENT TEMPORAL FEATURE ENCODER IN VCREC ON

AWCV-100K.

Temporal Feature Encoder Spatial Feature Encoder AR(%) ↑ Params(M) ↓
1D-TCRN [30] StrokeGAT 49.31 8.6
LSTM [57] StrokeGAT 47.22 9.5
Transformer [58] StrokeGAT 44.11 39.2
% StrokeGAT 39.67 2.9

1DCNN(Ours) StrokeGAT 52.43 3.9

TABLE VII
RESULTS OF DIFFERENT CHARACTER STRUCTURE MODEL IN VCREC ON

AWCV-100K.

Character Structure Model AR(%) ↑ Params(M) ↓
GCN [61] 51.88 3.8
SparseGAT [52] 49.34 4.1

StrokeGAT(Ours) 52.43 3.9

study ventured into character spatial exploration using GCN,
SparseGAT [52], and StrokeGAT. As elucidated in Table VII,
StrokeGAT emerged as the optimal performer, highlighting
the Graph Attention Network’s (GAT) adeptness in capturing
extensive spatial dependencies crucial for character analysis.
This reinforces GAT’s superiority in discerning and modeling
intricate spatial structures pivotal for character feature under-
standing.
Comparison of Different Decoders. In our analysis of
AWCV-100K, we scrutinized various decoder models. The
Connectionist Temporal Classification (CTC) technique, pi-
oneered by Graves et al. [60], empowers models to learn
direct mappings from input to output sequences sans explicit
alignment requirements. Our experimentation, outlined in Ta-
ble VIII, encompassed exploring diverse configurations of
fully connected decoders. Notably, the 2-layer fully connected
(2-layer FC) decoder emerged as the best performer.

In contrast to CTC, the 2-layer FC decoder exhibited
superior performance, particularly excelling in single-character
recognition tasks. This disparity highlights the distinct advan-
tage of the FC decoder architecture over CTC, especially in
accurately identifying individual characters within sequences.

E. Performance on other Dataset.

We construct different experiments on different languages
(e.g., English and Chinese) and forms (e.g., trajectory-based
and video-based) of datasets.

Table IX displays the performance of VCRec on trajectory-
based datasets, which have exhibited even better performance

TABLE VIII
RESULTS OF DIFFERENT DECODERS IN VCREC ON AWCV-100K.

Decoder AR(%) ↑ Params(M) ↓
CTC [60] 49.66 3.9
1-layer FC 50.43 3.8
3-layer FC 51.43 3.9

2-layer FC(Ours) 52.43 3.9

TABLE IX
VCREC PERFORMS ON THE TRAJECTORY-BASED CHINESE CHARACTER

DATASET IAHCC-UCAS2016 [12].

Trajectory-based Dataset Method AR(%) ↑
LSTM [62] 93.18
ViT-B [63] 93.85
ViT-L [63] 93.91
1DCNN [58] 96.78IAHCC-UCAS2016

VCRec (Ours) 96.85

TABLE X
VCREC PERFORMS ON VIDEO-BASED ENGLISH DATASETS. WITA [17] IS

A VIDEO-BASED ENGLISH DATASET. CER IS CHARACTER ERROR RATE.

Video-based Dataset Method CER(%) ↓
ST-rMC [17] 92.94
ST-R(2+1)D [17] 87.51
ST-R3D [17] 29.24
TR-AWR [35] 29.86WiTA

VCRec+CTC 30.12

on the IAHCC-UCAS2016 (a trajectory-based Chinese char-
acter dataset).

Since the WiTA consists of English words containing mul-
tiple English characters, we have adopted the concept of
CTC [60] in those experiments instead of the FC decoder
mentioned in our method. Table X displays the performance
of VCRec on a video-based English dataset, which has
demonstrated comparable performance on the WiTA (English).
Table XI displays the performance of VCRec on trajectory-
based datasets, which have exhibited comparable performance
on the IAHEW-UCAS2016 (a trajectory-based English word
dataset).

The results of the experiments on these English datasets
have demonstrated comparable performance in other lan-
guages, indicating that our method exhibits strong generaliza-
tion across different languages. In addition, we have proceeded
to analyze that our approach showcases considerable effec-
tiveness in modeling spatial structures within the context of
the Chinese language, leveraging its inherent structural traits.
Nevertheless, its performance exhibits a relatively diminished
impact in English contexts, primarily due to the heightened
emphasis on temporal information within the language.

TABLE XI
VCREC PERFORMS ON TRAJECTORY-BASED ENGLISH DATASETS.

IAHEW-UCAS2016 [29] IS A TRAJECTORY-BASED ENGLISH DATASET.
CAR IS CHARACTER ACCURACY RATE.

Tarjectory-based Dataset Method CAR(%) ↑

LSTM+CTC [62] 97.13
LSTM+Decoder [64] 96.86
1DCNN+Decoder [58] 97.45IAHEW-UCAS2016

VCRec (Ours) 96.51
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VI. CONCLUSION

In this work, we have presented the AWCV-100K dataset,
a video-based air-writing dataset designed for real-world sce-
narios. To address the challenges posed by AWCV-100K, we
propose the VCRec method, a two-stage architecture. This
method initially compresses sparse visual features into finger-
tip features and then models fingertip feature sequences using
a spatial-temporal sequence module. This module captures
temporal information from fingertip movements and represents
the spatial structure of Chinese characters. VCRec achieves an
accuracy of 52.43% on the AWCV-100K dataset.

We anticipate that our dataset and the baseline model will
stimulate research in real-world applications. For example, ap-
plying air-writing in healthcare for hands-free control in sterile
environments, utilizing it in AR and VR for immersive expe-
riences, integrating it into education and training scenarios,
enhancing accessibility for individuals with disabilities, and
implementing gesture-based interfaces in industrial settings for
improved safety and efficiency in manufacturing processes.

The dataset, toolkit, and experimental results will be re-
leased to further advance air-writing research.
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