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ABSTRACT
Similar object interference (SOI) problem challenges the single ob-
ject tracking (SOT) task, leading to the failure of feature-based
trackers and subsequent performance degradation. Unfortunately,
current generic SOT benchmarks do not effectively tackle this criti-
cal challenge, while popular SOT algorithms consistently underes-
timate the influence they have on tracking performance. To bridge
this gap and further enhance the investigation of similar object
interference in SOT, we adopt the following viewpoints: (1) By
examining the operational principles of mainstream trackers and
their performance on representative SOT datasets, we redefine
similar objects, taking into account the cognitive bias that exists
between trackers and humans when dealing with this challenge.
(2) Subsequently, we develop a mining methodology that enables
the extraction of the SOI sub-dataset from SOT datasets without
relying on human intervention. This methodology comprises two
main components: determining the SOI challenge and screening
the SOI sequences. The SOI dataset is acquired from representative
SOT dataset using our proposed approach, known as SOI2023. This
dataset serves as an ideal environment to facilitate the investigation
of challenges related to similar object interference. (3) Additionally,
we conduct extensive tracking experiments with 20 typical track-
ers and their variants on SOI2023 and analyze their performance
for similar object interference scenes in several dimensions. The
experimental results demonstrate the effectiveness of our proposed
mining method, while revealing the strengths and weaknesses of
current trackers when faced with the challenge of similar object
interference.We hope this work can provide inspiration to the track-
ing community and also provide support and insights for robust
tracking under the SOI challenge.
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1 INTRODUCTION
Visual single object tracking is a highly complex research area in
computer vision [24], with applications in autonomous driving,
robotics, video surveillance, and unmanned aerial vehicles [20, 28].
Recently, the field has witnessed significant progress in tracking
algorithm performance, mainly due to advancements in deep learn-
ing technology. Regrettably, the performance of trackers is still
not at the point where it can be called perfect, and there is still a
huge gap in performance on the SOT dataset compared to humans.
Researchers subdivide the reasons for these gaps into different chal-
lenging factors: occlusion, fast motion, reappearance, etc., and have
conducted extensive exploration on these challenge factors in terms
of relevant benchmark establishment and algorithm improvement.
However, one crucial challenging factor, similar object interference
(SOI), which is evident in many failure cases (see Fig. 1), has been
largely overlooked in research.

Possible limitations can be categorized into several aspects. Firstly,
there is a lack of a precise definition of similar objects in the context
of tracking. Typically, researchers approach similar objects from a
human perspective, nobody really cares what the algorithms see
them as. It is also not clear whether training a model to distinguish
between similar objects based on human perceptions of them is ef-
fective. In addition, the majority of generic SOT datasets do not sep-
arate sequences that involve similar object interference challenge,
and there have been no specific SOT datasets dedicated to address-
ing these challenges within the research community. Consequently,
the lack of a comprehensive research environment has resulted
in a limited focus on similar object interference within trackers.
Mainstream algorithm designs primarily concentrate on enhancing
the architecture to improve the algorithms’ overall tracking capa-
bilities. Only a few works [3, 22], have explored and specifically
designed solutions to tackle the SOI challenge.

These issues have motivated us to research and explore the SOI
challenge in SOT. To give a reasonable definition of similar objects
based on the algorithm’s perspective, we first try to find out what
they see as similar objects. We conduct an analysis of failure cases
in existing trackers using sequences from SOT dataset. Based on
this analysis, we propose a new definition of similar objects, which
is evident that the tracking algorithm’s interpretation of similar
objects deviates from traditional human perception.
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Figure 1: The representative sequences of SOI2023. These
sequences are mined from the generic SOT dataset repre-
sented by LaSOT [10]. To visually assess the tracking ability
of current algorithms under SOI scenarios, we include the
performances of state-of-the-art (SOTA) trackers. A, B, and C
illustrate the instances of different classes of similar objects
under the perspective of trackers, which are classified into
three categories: objects with similar categories (OSC) to the
target, objects with different categories (ODC) to the target,
and background blocks (BGB) . The vertical arrow represents
a decreasing level of semantic similarity, highlighting the
disparity between trackers and humans in terms of their
ability to recognize similar objects.

Next, we propose a novel mining method capable of extracting
SOI sub-datasets from any SOT datasets, effectively leveraging the
existing data. Our mining method comprises two main components:
determining the presence of the SOI challenge and screening se-
quences for SOI. Our method for determining the SOI challenge
involves counting the number of target candidates using the confi-
dence score map derived from the trackers’ assessment of the search
frame image. This approach provides determination results that are
solely based on the algorithm’s perception of similar objects and do
not incorporate any human priors. Our strategy for screening SOI
sequences is both simple and effective. Based on the SOI challenge
determination results, we identify and compile the sequences that
exhibit SOI challenge, creating the SOI sub-dataset of SOT datasets.
Furthermore, we further categorize this dataset into subsets based
on the frequency of occurrence of the SOI challenge. We firmly
believe that this granular subdivision facilitates a deeper under-
standing of the capabilities and limitations of trackers in the face
of the SOI challenge.

The method of SOI challenge determination can selecting any
tracking algorithm as the determiner, and our SOI sequences screen-
ing strategy can be used on all SOT datasets. Utilizing the proposed
mining method, we perform the establishment of the SOI dataset.
The trackers selected as determiners include SuperDiMP [6] (based
on CNN), OSTrack [31] (based on transformer), and ToMP [21]
(based on CNN-transformer), which represent the highest level
of cognitive ability of different architecture algorithms for similar

objects. Specifically, tracking is a sequential decision-making pro-
cess where longer sequences will contain richer challenges and set
higher demands on algorithms, so we select LaSOT [10], a repre-
sentative and the largest long-term tracking dataset, as the subject
of mining, aiming that the constructed SOI dataset is sufficiently
representative and highly challenging. Finally, we obtain a sub-
stantial SOI dataset named SOI2023, containing a total of 563 SOI
sequences. Besides, we make a more detailed division according to
the SOI challenge occurrence frequency yields three subsets that
reflect the degrees of dominance for SOI challenge in sequences.
Then we evaluate existing representative trackers on SOI2023 and
analyze their performance for similar object interference scenes in
several dimensions.

Contributions of this work can be summarized as follows: (1)
We first investigate the challenge posed by similar objects from
the perspective of trackers. Furthermore, we propose a novel and
effective method for mining SOI sequences to construct the SOI
dataset, which avoids the bias and workload caused by manual
labeling and screening of sequences in the past, and makes full
use of the existing enormous amount of SOT data. (2) We utilize
the proposed mining method to construct the first SOI dataset,
which contains SOI sequences are mined from the SOT dataset
LaSOT [10], and the determiners are all representative trackers.
We name it SOI2023. (3) We benchmark 20 recent state-of-the-art
tracking approaches and their variants on SOI2023 and analyze their
performance in this paper. We carry out extensive experiments to
study the impact of SOI challenge on the performance of trackers.

This research aims to inspire the research community and fos-
ter the development of trackers that can gradually overcome this
challenge in pursuit of real intelligence. We also believe that this
generalizable construction of the challenge factor space can be mi-
grated to the study and analysis of other visual tasks and other
challenge factors, helping researchers to better utilize existing re-
search resources to conduct efficient studies. We will release the
code of our SOI mining method soon, as well as the SOI2023 dataset
on https://github.com/updateforever/SOI2023.

2 RELATE WORK
2.1 SOT benchmarks
Since the first SOT benchmark VOT2013 [17] was proposed, re-
searchers have progressively introducedmore influential SOT bench-
marks that include larger datasets and standardized metrics.

Initially, due to the limitations of early SOT tasks, the focus of
SOT datasets was on short-term tracking. The renowned competi-
tion, VOT [16], provided specific keywords to define the SOT task:
single-target, model-free, causal trackers, single-camera, and short-
term. These keywords not only differentiate this task from other
vision tasks conceptually, but also simplify the initial studies by
imposing constraints. These constraints are gradually being lifted
as the SOT task develops. Long-term tracking has emerged as the
prevailing task in the field of SOT. They involves longer sequences
that encompass a wider range of tracking scenes and more com-
plex challenging factors [10, 23]. Additionally, the size of long-term
tracking datasets has significantly expanded to accommodate the
requirements of data-driven deep learning-based trackers. Recently,
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Figure 2: Examples of possible SOI scenarios (based on OSTrack [31] with the LaSOT [10] benchmark). The■ blue boxes indicate
the search region, the ■ red boxes show the tracking result, and the ■ green boxes represent the ground-truth. The trend
indicated by the downward arrow suggests the decreasing semantic level among similar objects in the three scenario groups.
This gradual decline reflects the algorithm’s diminishing cognitive ability.

a novel task called global instance tracking (GIT) has been pro-
posed [13]. This task focuses on locating user-specified instances
in videos without any assumptions regarding camera or motion
consistency. In contrast to traditional SOT methods, GIT eliminates
the assumption of a single shot and utilizes datasets with longer
sequences that include frequent shot switches.

However, the challenge of similar object interference in SOT
has not received sufficient attention within benchmark datasets, as
there are limited annotations or statistical results available. Track-
ingNet [23] introduces the similar object (SOB) attribute, which
manually labels similar object information by visually analyzing
a dataset comprising 511 videos. This attempt represents the first
SOT benchmark for addressing the challenge of similar object in-
terference, but the method used to determine SOB in TrackingNet
relies heavily on human judgment, which may not be suitable for
evaluating trackers.

2.2 SOT methods
The currently dominant SOT methods rely on siamese network
architecture, which predicts the target by comparing the correla-
tion between a template image and a search image. These methods
have seen continuous development [1, 4, 5, 7]. In terms of model
building, these methods can be further classified into CNN-based
[1–3, 7, 9, 26], transformer-based [5, 31], and CNN-transformer
based [4, 21] network structures. While these methods have demon-
strated excellent performance, they struggle to effectively handle
the interference caused by similar objects during tracking.

Several studies have proposed effective strategies to address the
challenges posed by similar object interference (SOI). For instance,
[27] utilizes hand-crafted association scores to link subsequent
cross-frame detections and form short traces. Meanwhile, [3] main-
tains a learnable state that propagates scene information across
frames, enabling the tracking of all regions within the scene. Ad-
ditionally, [22] introduces a learnable network that explicitly and
continuously tracks target candidates on a frame-by-frame basis.
It is worth noting that these methods have been evaluated and
proven effective in handling the SOI challenge, despite the absence
of a dedicated SOI dataset. Instead, they have been directly tested
on generic SOT datasets. Furthermore, the techniques developed
to address similar object interference also offer valuable insights

and assistance in the development of methods for generic scene
tracking.

3 SIMILAR OBJECT INTERFERENCE UNDER
TRACKERS’ COGNITIVE LEVEL

This section describes our study of the definition of similar objects.
Firstly, we aim to investigate the robustness of current trackers

regarding the interference from similar objects, given the contin-
uous advancements in research. Among the transformer-based
algorithms, OSTrack [31] demonstrates the best performance on
generic tracking benchmarks, making it an ideal choice to represent
the upper bound of tracking algorithm performance. We execute
OSTrack on the widely recognized LaSOT dataset [10], saving and
visually presenting its tracking results. Here, we adhere to the
widely accepted assumption that target discrimination relies on the
confidence score map generated by the tracker’s final output. Ac-
cording to this assumption, we consider the presence of the target
in a frame whenever confidence scores surpass a certain thresh-
old (typically set at 0.25), selecting the position with the highest
confidence score to predict target information 1. Consequently, we
analyze the failure cases with challenges posed by similar object
interference in OSTrack, as depicted in Fig. 2.

Our initial conclusion reveals that appearance-based trackers
have different interpretations of similar objects when compared
to humans. Our findings demonstrate that even the most effec-
tive algorithms are prone to tracking drift caused by interference
from similar objects, whereas such errors are nearly nonexistent
in human perception. Additionally, similar objects often yield high
confidence scores, indicating that the algorithm fails to recognize
when the target disappears and lacks the capability to distinguish
between similar objects. These instances of failure illustrate that
current trackers lack advanced cognitive abilities. They rely solely
on appearance features for matching templates and search images
to predict tracking targets.

Based on the actual performance of trackers, we provide a defi-
nition of similar objects that aligns with the cognitive capabilities
of the algorithms. In the current search region, similar objects to

1Without special notes, all of our subsequent studies are based on this assumption
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the target can be categorized into three groups based on their se-
mantic characteristics and appearance feature information: (1) the
other objects of the same category as target (OSC, such as in Fig.2-
Left); (2) the objects of different categories with similar appearance
features to target (ODC, such as in Fig.1-Middle); and (3) the back-
ground blocks with similar appearance features (BGB, such as in
Fig.1-Right), which have no specific category and even do not meet
the definition of objects. Among these categories, objects belong-
ing to OSC have a higher semantic level and align with human
cognition. Objects in the ODC and BGB categories differentiate
the algorithm’s performance from human perception. The former
has a lower semantic level compared to OSC, while the latter lacks
semantic information and relies solely on apparent features.

As soon as the cognitive level of algorithms for similar objects
is clarified, it is a crucial step to build a SOI dataset that can satisfy
the relevant algorithm’s evaluation review. So we propose a novel
approach for mining SOI datasets which will elaborate in next
section. As we observe this is the first attempt at building the
SOI benchmark, and our hope is to lead the community to better
assess the cognitive capabilities of current trackers and to construct
relevant SOI datasets based on their existing cognitive stages - in
order to contribute to the evaluation and improvement of trackers’
performance.

4 SOI SUB-DATASET MINING METHOD
Based on the cognitive level of trackers, we design a novel mining
method for SOI sub-dataset, and the specific process of the mining
method is shown in Fig. 3. It consists of two main components:
the SOI challenge determination method and the SOI sequence
screening strategy, which we describe in detail below.We also apply
our SOI mining approach on the representative dataset LaSOT [10]
to construct a appropriate dataset known as SOI2023.

4.1 SOI determination based on the confidence
score map of trackers

We propose a novel method for determining SOI based on the con-
fidence score map generated by the trackers. This method enables
us to capture the trackers’ perception of similar objects.

The confidence scores predicted by the siamese network tracking
method provide a reliable reference for assessing appearance sim-
ilarity. Higher confidence scores indicate a stronger resemblance
between the tracked objects and the target. In general, trackers
select the index of the highest score point from the score map of
the current frame to map the center coordinate of target at a coarse-
grained level, and predict the final target state via bounding box
regression branch.

As one of the requirements, the confidence score map 𝑆𝑡 ∈ Rℎ×𝑤
of the determiner tracker on frame 𝐼𝑡 is given, where (ℎ,𝑤) denote
the size of confidence score matrix. We use maximum pooling
operation to obtain local maxima score on confidence score map:

𝑆𝑡𝑐 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑆𝑡 ) (1)

where 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 is a maximal pooling whose kernel size is set to
(5, 5) and the padding is set to 2. This operation extracts the local
maximum scores from the confidence score map while simultane-
ously applying an approximate non-maximum suppression (NMS)

technique to address the issue of duplicate candidate determination
arising from large target sizes. 𝑆𝑡𝑐 = {𝑆𝑡

𝑐1, . . . , 𝑆
𝑡
𝑐𝑚} is the set of

target candidates for 𝐼𝑡 . Next we filter out the target candidates
with insufficient confidence scores:

𝑆𝑡𝑐 = {𝑆𝑡𝑐𝑖 | 𝑆
𝑡
𝑐𝑖 ≥ 𝛼 · 𝑆𝑡𝑚𝑎𝑥𝑎𝑛𝑑𝑆

𝑡
𝑐𝑖 ≥ 𝜂} (2)

where 𝑆𝑡𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑆𝑡𝑐 ), 𝛼 is a hyperparameter for the confidence
score threshold and 𝜂 is the threshold hyperparameter for the target
not found.

The set 𝑆𝑡𝑐 = {𝑆𝑡
𝑐1, . . . , 𝑆

𝑡
𝑐𝑛} represents the presence of similar

objects, denoting that they may cause interference on the image
𝐼𝑡 . Clearly, if the size of 𝑆𝑡𝑐 exceeds 1, it indicates the existence of a
challenge posed by similar object interference.

4.2 Screening strategy for SOI sequences
We propose a systematic and stringent sequence screening strategy
for the generic SOT datasets, which relies on the outcome of the
SOI determination method detailed in Section 4.1. This strategy can
be summarized as follows:

First, we execute𝑚 determiners on the SOT dataset to generate
predicted confidence score maps for each frame in all sequences.
Then, we employ the proposed SOI determination method to obtain
the result 𝑆𝑡

𝑐 𝑗
= {𝑆𝑡

𝑐1, . . . , 𝑆
𝑡
𝑐𝑚}. Our sequence screening process

consists of two distinct stages of judgment:
Whether the sequence has SOI challenges. If the length of 𝑆𝑡

𝑐 𝑗

exceeds 1, it indicates that the associated determiner acknowledges
the presence of a SOI in frame 𝐼𝑡 . If more than 𝛽 = ⌊(2/3)𝑚⌋
determiners affirm this, frame 𝐼𝑡 is designated as an SOI frame and
added to the set of SOI frames for this sequence, denoted as 𝐼𝑠𝑜𝑖 .

𝐼𝑠𝑜𝑖 = {{𝐼𝑡𝑖 }𝑘1 | 𝐼𝑡𝑖 ∉ 𝐼𝑎𝑏𝑠𝑒𝑛𝑡 } (3)

where we filter out the SOI determination results of the frames
with target absence 𝐼𝑎𝑏𝑠𝑒𝑛𝑡 , which adheres to the current tracking
benchmark’s evaluation principles. 𝐼𝑠𝑜𝑖 = {𝐼𝑡1, . . . , 𝐼𝑡𝑘 } is obtained
after judging all frames. If 𝑘 > 0, the sequence exists SOI challenges
and is divided into the SOI sub-dataset 𝐿𝑇𝑜𝑡𝑎𝑙 . On the contrary it
will be removed.

Further division based on the SOI challenge occurrence
frequency. In order to extract more comprehensive information
regarding SOI challenges and gain insights into their impact on
tracking, we conduct a more detailed division based on the occur-
rence frequency of SOI challenge in sequences. First, we read the
SOI frame set, denoted as 𝐼𝑠𝑜𝑖 , for the sequence within the SOI sub-
dataset. We calculate the number of occurrences of SOI challenges
by using a standard interval of 𝑇 = 10. A new occurrence of a
SOI challenge is identified if the interval between the previous and
current SOI frames exceeds 10. Consequently, we obtain the count
of SOI challenge occurrences 𝑇𝑓 for the sequence, which we refer
to as the SOI challenge occurrence frequency. We observe that the
occurrence frequency of SOI challenges in large-scale sequences
follows a long-tailed distribution trend (see Fig. 4). To better analyze
the impact of the dominance degree of SOI challenges on track-
ing, we divide the SOI sequences into three sets 𝐿𝑂𝑛𝑐𝑒 , 𝐿𝑀𝑜𝑟𝑒 , and
𝐿𝑀𝑜𝑠𝑡 , which represent sequences with only one occurrence of SOI
challenge, multiple occurrences of SOI challenge, and a dominance
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Figure 3: The overall process of mining SOI sub-dataset from the SOT dataset, where the black arrow indicates the process of
SOI challenge determination and the green arrow indicate the process of SOI sequence screening. Our mining method involves
traversing all frames of the SOT dataset and employing multiple trackers to vote on the existence of the SOI challenge in each
frame. Frames identified as containing the SOI challenge are saved in the set 𝐼𝑠𝑜𝑖 . Based on the results of the SOI determination,
the corresponding SOI sequences are selected and included in the SOI sub-dataset set 𝐿𝑆𝑂𝐼 .

of SOI challenge, respectively:


𝐿𝑂𝑛𝑐𝑒 = {𝐿𝑖 | 𝑇𝑓𝑖 = 1}
𝐿𝑀𝑜𝑟𝑒 = {𝐿𝑖 | 𝑇𝑓𝑖 ∈ (1, 10]}
𝐿𝑀𝑜𝑠𝑡 = {𝐿𝑖 | 𝑇𝑓𝑖 > 10}

(4)

Obviously, 𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑂𝑛𝑐𝑒 + 𝐿𝑀𝑜𝑟𝑒 + 𝐿𝑀𝑜𝑠𝑡 .
We posit that the SOI sub-datasets derived from mining the

generic SOT datasets hold value for the advancement of the SOI
challenge. To better spearhead the relevant research, we construct
a first SOI dataset using the proposed mining method, which is
detailed in section 4.3.

4.3 Construction of the SOI dataset
4.3.1 Selection of determiners and generic SOT dataset. Our SOI
challenge determination method can be automatically executed by
any tracker, while our SOI sequences screening strategy is applica-
ble to a wide range of generic SOT datasets.

The former relies on the confidence score maps of trackers, allow-
ing for flexible determination of the number of determiners. This
approach aligns with the conventional manual attribute determi-
nation standard, where multiple professionals annotate challenge
attributes to ensure accuracy [13, 15]. Striking a balance between
normality and efficiency, we opt for three determiners to iden-
tify the SOI challenge: SuperDiMP [6] is a CNN and correlation
filter based tracker, ToMP [21] introduces the transformer into
the CNN network to construct a better model predictor, and for
the transformer-based model we select OSTrack [31], which is cur-
rently the most popular, to be representative. These trackers capture
various architecture-based trackers in dealing with similar object
interference and provide evidential support for the accuracy and
validity of SOI challenge determinations. More details about them
will be supplemented in Section 5.1.1

Given the variations in application scenarios and focus factors
across SOT benchmarks, we specifically choose to utilize LaSOT
[10] as the representative SOT dataset. As one of the most influ-
ential long-term tracking benchmarks in the tracking community,
it provides a large-scale new benchmark for SOT. It encompasses

1400 sequences, averaging 2500 frames per sequence. It incorpo-
rates over 3 million manually labeled bounding box annotations,
meticulously inspected, and covers a diverse range of 70 categories.

Table 1: The results of SOI sequences screening in LaSOT

soi sequences original sequences
train 433 1120
test 130 280

4.3.2 A representative SOI dataset: SOI2023. We perform SOI de-
termination using the selected trackers on LaSOT [10], and then
perform the SOI sequences screening work 2, and the SOI sequence
screening results shown in Tab. 1. LaSOT covers all scenarios of
generic target tracking and represents a majority of SOT bench-
marks, which partitions 1400 sequences into train and test sets.
Following its established division standard we conduct our mining
work and get the SOI2023, which also includes both train and test
sets. It is evident that the long sequences in the long-term tracking
dataset encompass more complex tracking scenarios, resulting in
a high number of SOI sequences. Evidently, the occurrence of SOI
challenges also relates to the degree of difficulty in tracking.

Additionally, we calculated the occurrence frequency of SOI
challenges in these sequences (refer to Fig. 4). Evidently, the division
results show a Long-Tail distribution trend when considering the
occurrence frequency attribute of SOI challenges. To assess the
performance of trackers under different levels of dominant SOI
challenge, we also categorize the SOI sequences into more detailed
groups (𝐿𝑂𝑛𝑐𝑒 , 𝐿𝑀𝑜𝑟𝑒 , and 𝐿𝑀𝑜𝑠𝑡 ).

Overall, SOI2023 consists of 433 sequences for the train set and
130 sequences for the test set. In Section 5, we will evaluate the
performance of representative trackers on the SOI2023 dataset. Ad-
ditionally, we will discuss and analyze the algorithms’ performance
from multiple perspectives.

2Trackers are all run according to the settings and parameters provided in the original
paper and strictly follow the original description and requirements of dataset.
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Figure 4: The comparison results of the SOI dominance de-
gree of sequences in test set. The left is the statistical results
of SOI challenge occurrence frequency, and the right is the
results of sequence division based on the attributes of the
SOI challenge occurrence frequency.

5 EXPERIMENT
5.1 Evaluation and Analysis on SOI2023
In this section, we conduct comprehensive experiments using estab-
lished trackers on SOI2023. These tracking results not only validate
the rationale behind our proposed SOI challenge determination
method and SOI sequence screening strategy, but also offer valu-
able guidance for future studies in this domain.

Table 2: Overall tracking results of representative trackers
on SOI2023 and LaSOT [10]. The trackers are ranked by their
accuracy ( AUC ) scores on SOI2023, with precision (PRE) and
normalized precision (NPRE) scores presented. The Proper-
ties column denotes the feature representation of the differ-
ent trackers ( CNN - Convolutional Neural Network, HOG -
Histogram of Gradients, TRANS - Transform Network).

LaSOT SOI2023Tracker AUC AUC PRE NPRE Venue Properties

KCF [12] 0.211 0.139 0.146 0.153 TPAMI’15 HOG
SiamFC [1] 0.336 0.232 0.259 0.275 ECCV’16 CNN
SiamDW [32] 0.356 0.273 0.285 0.323 CVPR’19 CNN
ECO [8] 0.324 0.283 0.296 0.313 CVPR’17 HOG,CNN
SiamFC++ [30] 0.544 0.352 0.349 0.365 AAAI’20 CNN
SiamRPN [19] 0.475 0.355 0.352 0.382 CVPR’18 CNN
DaSiamRPN [34] 0.415 0.360 0.361 0.387 CVPR’18 CNN
ATOM [7] 0.515 0.380 0.383 0.394 CVPR’19 CNN
Ocean [33] 0.560 0.399 0.395 0.420 ECCV’20 CNN
KYS [3] 0.554 0.418 0.414 0.427 ECCV’20 CNN
GlobalTrack [14] 0.521 0.420 0.428 0.440 AAAI’20 CNN
DiMP [2] 0.569 0.443 0.447 0.456 ICCV’19 CNN
PrDiMP [9] 0.598 0.481 0.490 0.502 CVPR’20 CNN
SiamRCNN [26] 0.648 0.506 0.523 0.520 CVPR’20 CNN
SuperDiMP [6] 0.631 0.522 0.543 0.542 CVPR’20 CNN
TransT [4] 0.649 0.529 0.568 0.552 CVPR’21 TRANS
MixFormer [5] 0.692 0.570 0.606 0.590 CVPR’22 TRANS
OSTrack [31] 0.691 0.572 0.611 0.591 ECCV’22 TRANS
ToMP [21] 0.676 0.572 0.62 0.600 CVPR’22 CNN,TRANS
KeepTrack [22] 0.671 0.594 0.637 0.624 ICCV’21 CNN

5.1.1 Single Object Tracking Methods. In this work, we select re-
cent transformer and convolutional neural networks (CNN) based
trackers that have demonstrated outstanding performance across

various benchmarks and challenges. Additionally, to ensure compre-
hensiveness, we have also included correlation filter based trackers
in our experiments. Tab. 2 shows 20 representing SOT algorithms
covering both classic and SOTAmethods. Brief descriptions of these
methods are provided below.

(1) KCF [12] is a classical Correlation Filter-based method that
achieves a balance between tracking accuracy and high speed. ECO
[8] is the first attempt to fuse Convolutional Neural Networks
(CNN) with Correlation Filter (CF) methods. SiamFC [1] pioneered
the concept of the Siamese Neural Network (SNN) based tracker,
which delivers satisfactory tracking performance via a straightfor-
ward network structure for feature matching between the template
region and the search region. (2) Subsequently, SiamRPN [19] uti-
lizes the region proposal network [25] to attain precise target re-
gression. DaSiamRPN [34] employs data augmentation techniques
to enhance discrimination. On the other hand, SiamRPN++ [18]
and SiamDW [32] introduce deeper and wider backbone networks
based on ResNet [11] for enhanced feature extraction. SiamFC++
[30] and Ocean [33] adopt an anchor-free architecture to mitigate
the complexity associated with anchors. (3) GlobalTrack [14] as-
sumes the absence of motion consistency and conducts a compre-
hensive image search to mitigate cumulative errors. Additionally,
SiamRCNN [26] develops a robust re-detection mechanism utilizing
FasterRCNN [25]. (4) ATOM [7] combines CF and SNN to design
a new tracking framework. Building upon this framework, DiMP
[2] enhances discriminative power by optimizing the loss function.
Additionally, PrDiMP [9] and SuperDiMP [6] employ probabilis-
tic regression techniques to further enhance tracking accuracy.
KYS [3] incorporates scene information and merges it with the
appearance model to localize objects. KeepTrack [22] establishes
a candidate association network to handle similar object interfer-
ence, which is trained through the mining of challenging sequences
from LaSOT [10]. (5) Recently, transformer-based trackers have
developed quickly. TransT [4] leverages the global attention mech-
anism to reconstruct features extracted from the backbone network
and enhance tracking performance. MixFormer [5] introduces an
end-to-end converter-based framework that facilitates parallel fea-
ture extraction and integration of target information. ToMP [21]
incorporates transformers into correlation filtering operations to
generate more robust model weights, resulting in improved accu-
racy of tracking results. OSTrack [31] devises a novel one-stream
tracking pipeline that conducts feature extraction and association
modeling simultaneously. Additionally, it introduces an early candi-
date eliminationmethod to remove irrelevant attention information,
thereby enhancing the model’s speed.

Notes. Due to the extensive workload, we conduct experiments
using the public code of these trackers without any modifications.
It is important to note that the validation results may contain some
inaccuracies due to variations in code environments, as well as dif-
ferences in hardware and software configurations on different ma-
chines. We have conducted a comprehensive evaluation using one
pass evaluation (OPE) and measured the precision, normalized pre-
cision, and success ratio of diverse trackers using well-established
tracking protocols [10, 29]. For all experiments, we employed a
server equipped with a 56 core Intel(R) Xeon(R) 2.0GHz CPU and 4
GeForce GTX TITAN X graphic cards.
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Figure 5: The performance of trackers under different SOI challenge dominance degrees, represented by success rate. (a) to (c)
contain sequences obtained by dividing them according to the occurrence frequency of SOI challenges.

5.1.2 Overall Performance. Tab. 2 present the overall performance
of trackers in OPE mechanism. It can be seen that all these trackers
perform worse on SOI2023 than on the original generic SOT dataset
LaSOT [10]. Due to the presence of numerous SOI challenges in
SOI2023, the algorithm scores tend to be low. Most algorithms
heavily depend on target appearance information and typically
utilize the template frame and the previous frame to aid in tar-
get localization. Unfortunately, this approach often leads to poor
performance when similar objects are present. Meanwhile, Keep-
Track [22] demonstrates superior performance compared to recent
trackers such as MixFormer [5], ToMP [21], and OSTrack [31], es-
tablishing a state-of-the-art (SOTA) result on SOI2023. It proves
that the ability of KeepTrack to cope with the SOI challenge is very
powerful, and on the other hand, it indicates that our SOI mining
approach is reasonable and effective.

5.1.3 Attribute Performance. The SOI2023 dataset categorizes se-
quences into subsets 𝐿𝑂𝑛𝑐𝑒 , 𝐿𝑀𝑜𝑟𝑒 , and 𝐿𝑀𝑜𝑠𝑡 based on three at-
tributes that signify the level of dominance of the SOI challenge.
Fig. 5 presents the detailed results of the trackers on these subsets,
we discuss here the success rate metric as a proxy for the fact that
all algorithms have the same experimental performance in terms of
precision and normalized precision. When the SOI challenge occurs
only once, all trackers perform close to the performance gained
on the generic SOT task. With the increase in the number of SOI
challenge occurrence, the performance of all algorithms deterio-
rates. Notably, KeepTrack [22], which is specifically designed for
handling the SOI challenge, achieves the most favorable results.

Clearly, as the occurrence frequency of SOI challenge in se-
quences increases, trackers face a higher demand to distinguish
similar objects and encounter more formidable challenges. Addi-
tionally, the outcomes on the subsets, obtained through attribute
division, also provide a more straightforward demonstration of the
efficacy and rationality of our proposed methods for determining
SOI and screening sequences.

5.2 Visual Analysis
We present here some examples of tracking result visualisations
(Fig. 6). Unlike humans, the mainstream trackers rely solely on the

appearance features of the target during tracking, without employ-
ing advanced semantic inference to assess if the tracked object is
still the original target.

Also, we have observed that cases of trackers mistakenly follow-
ing the wrong target solely due to the presence of similar objects
(Fig.6-A) are rare. Instead, tracking failures often occur as a result
of combined challenges and the presence of SOI. When only simi-
lar objects appear during tracking, trackers can typically maintain
consistent tracking performance. Despite high confidence scores
for both the target and the distractor, the tracking results do not
deteriorate. However, the presence of other challenging factors,
such as low resolution (Fig.6-B), occlusion (Fig.6-C), fast motion
(Fig.6-D), etc., significantly impacts tracking performance. These
challenges cause a rapid decrease in the confidence score of the
target, leading to the identification of the distractor with high confi-
dence as the target. Consequently, tracking drift or failure occurs. It
is noteworthy that trackers tend to continue learning information
about distractors even after tracking the wrong target. This makes
it challenging for trackers to correct their mistakes, resulting in
consecutive tracking failures.

Currently, numerous researchers focus on enhancing the fea-
ture extraction capability of trackers to extract more robust target
appearance features. However, this approach offers minimal im-
provement to the cognitive capabilities of the tracker. We advocate
that as the challenge of tracking SOI with low-level semantic infor-
mation has been progressively addressed, future research should
focus on enhancing the cognitive capabilities of trackers.

6 CONCLUSION
This paper presents a novel approach to addressing the challenge
of similar object interference in SOT. We redefine similar objects
based on the cognitive capabilities of current algorithms, and then
develop a novelty SOI mining method to construct a representative
SOI dataset called SOI2023. Finally, we evaluate 20 representative
methods using comprehensive evaluation mechanisms and metrics
specific to SOI2023.

Notably, our definition of similar objects and the establishment
of the SOI dataset SOI2023, based on our proposed SOI mining
method, are designed to be dynamically updated. This allows them
to be adjusted as trackers continue to improve in performance and
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Figure 6: Visualization results of representative trackers on
SOI2023, including both good case (A) and bad cases (B-D).

cognitive abilities. Furthermore, these updates serve to support the
ongoing research and development of trackers.

We have found that the cognitive level of existing trackers is
limited, resulting in poor tracking performance on SOI sequences.
Going forward, we anticipate that our proposed SOI mining method
and the SOI2023 dataset will serve as a valuable resource for future
research. Additionally, our analysis of the cognitive level of algo-
rithms and the principles of algorithmic intelligence development
is not only applicable to the SOI challenge in tracking, but can also
be relevant and valid in other research domains.
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