

AAAI 2026
January 20 – 27, 2026
Singapore

CausalStep: A Benchmark for Explicit Stepwise Causal Reasoning in Videos

Xuchen Li^{1,2,3*} Xuzhao Li^{4*} Shiyu Hu⁴ Kaiqi Huang^{1,2†} Wentao Zhang^{3,5†}

¹Institute of Automation, Chinese Academy of Sciences

²University of Chinese Academy of Sciences

³Zhongguancun Academy

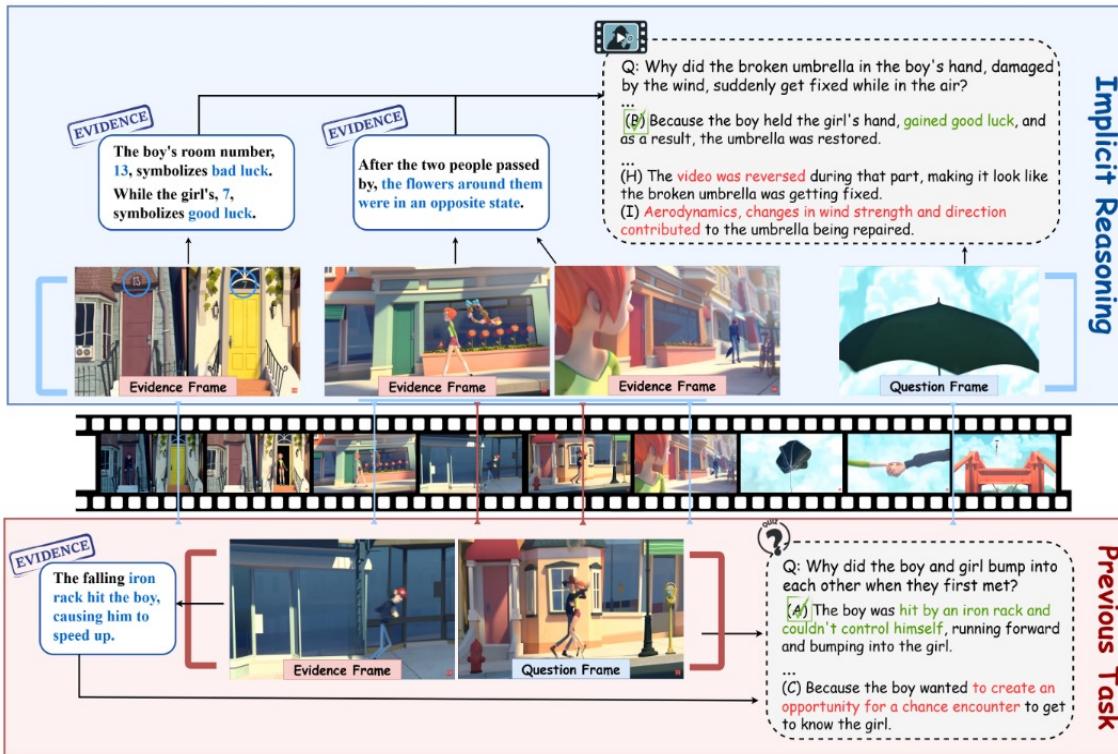
⁴Nanyang Technological University

⁵Peking University

s-lxc24@bjzgca.edu.cn, kqhuang@ia.ac.cn, wentao.zhang@pku.edu.cn

Dr. Shiyu Hu

- Research Fellow in Nanyang Technological University (NTU)
- <https://huuuuusy.github.io/>
- shiyu.hu@ntu.edu.sg


Scan to download
this slides

WeChat for the
first author

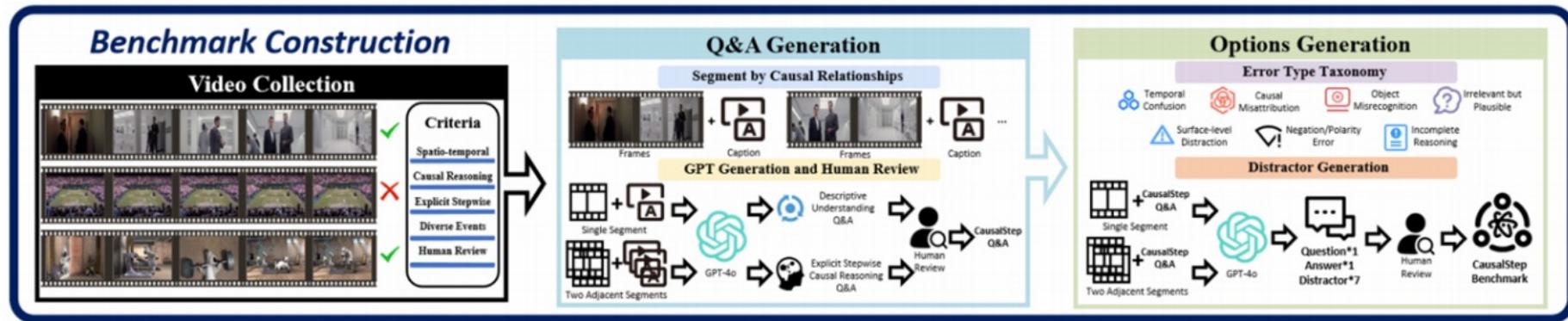
Motivation

Most video reasoning benchmarks focus on **perception or shallow understanding**, requiring only the **identification of relevant frames or context**.

Implicit Reason

For Perception

Limitation 1: By providing the entire video as input, these benchmarks allow models to **exploit global information or shortcut strategies**, thereby failing to assess true causal and stepwise reasoning.

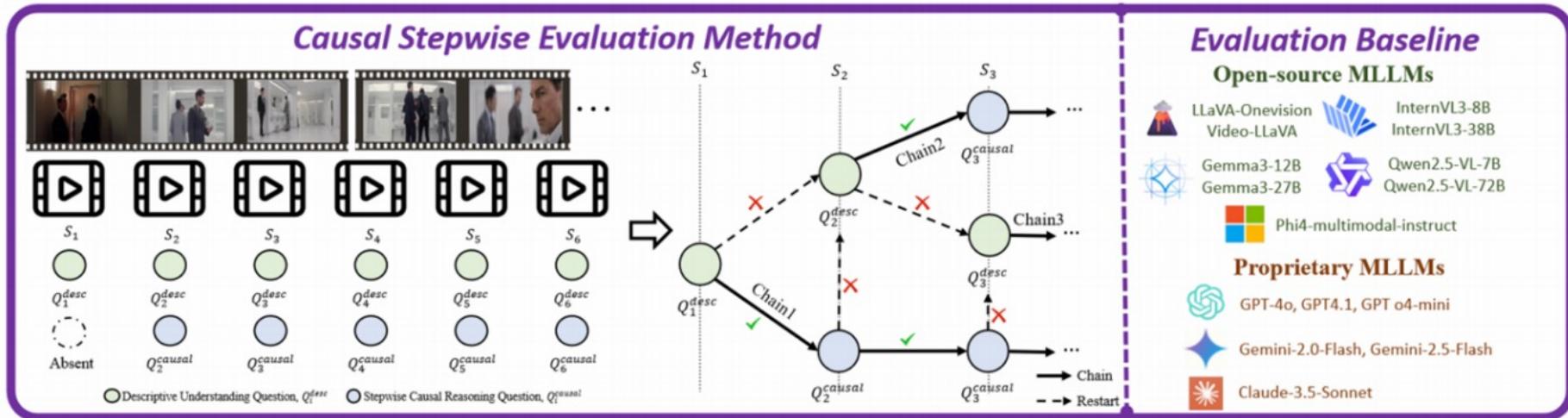

Limitation 2: The design of distractor options in multiple choice questions is often **unsystematic**, lacking systematic coverage of common reasoning errors.

Our Solution: CasualStep

A novel benchmark for **explicit stepwise causal reasoning**

Our Method: CausalStep

We introduce CausalStep, which **segments videos into causally linked units** and enforces a **strict stepwise QA protocol**, enabling rigorous evaluation of sequential, causally grounded reasoning in complex video narratives.

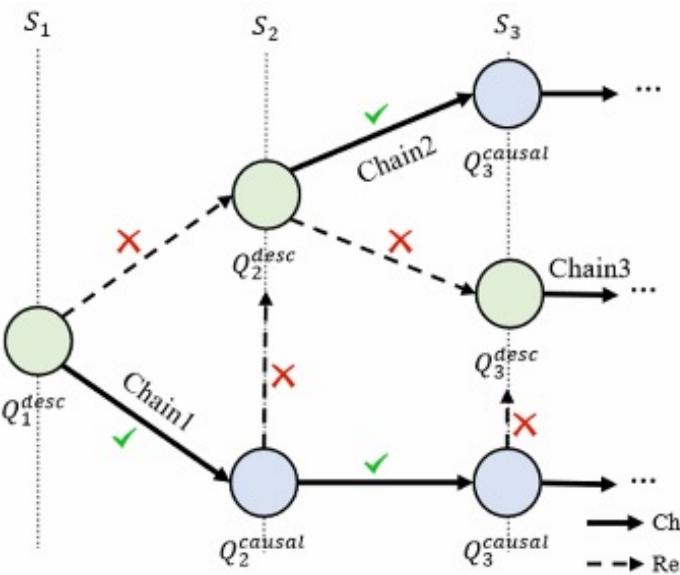


Data Contribution: Explicitly Embedding **Causal Structure**

- **Causal Segmentation:** Long videos are segmented into **causally linked event units**, rather than arbitrary clips.
- **Causal Question Design:** Questions are generated around **adjacent causal relations**, instead of simple perception or frame retrieval.
- **Taxonomy-based Distractors:** Distractor options are systematically designed based on common causal and temporal error types, improving **diagnostic power**.

→ **Preventing shallow understanding based on relevant-frame identification.**

Our Method: CausalStep


Evaluation Contribution: Enforcing **Step-by-Step** Causal Reasoning

- Strict Stepwise QA Protocol:** At each step, the model can only access the **current causal segment**, with no future information.
- Chain Dependency and Restart Mechanism:** Any incorrect step breaks the causal chain, making **stepwise reasoning mandatory**.
- Process-level Evaluation Metrics:** We evaluate whether models can **consistently maintain causal chains**, beyond question-level accuracy.

→ **Systematically eliminating shortcuts enabled by global context.**

Data defines what causal structure is, while evaluation ensures that stepwise causal reasoning is the only viable strategy.

Details: Annotation Strategy

Stepwise Reasoning Chain Annotation

- The reasoning chain begins with the Q^{desc} for the segment S_1 .
- If the current Q_i^{desc} is answered correctly, the chain will proceed to the Q^{causal} in the segment S_{i+1} . If any answer is incorrect, the reasoning chain is interrupted.
- At each step with a Q_i^{causal} , the model is provided with the current segment S_i and its direct preceding segment S_{i-1} , along with its previously correct answer.

Causal Segment 1

Q_1^{desc} : What are the two men primarily doing?
 A: They just came out of the restroom and are preparing to leave the room.
 B: One of the men is holding a mobile phone in his hand.
 C: They are standing motionless in the middle of the hallway.
 D: The restroom has many white sinks.
 E: They are searching for a hidden secret entrance.
 F: They first stand beside a door, then enter a bright restroom.
 G: They are merely walking around in the restroom.
 H: They are dining in a restaurant.

Causal Segment 2

Q_2^{desc} : What are the men primarily doing in the restroom?
 A: One man is fixing his hair before leaving the restroom.
 B: They gather in the restroom to conduct a secret transaction.
 C: One man is talking to a female server.
 D: The restroom has many white stalls and tiles.
 E: One man walks past the restroom, while the other handles items on the counter.
 F: Many men are wearing business suits and shirts.
 G: No one in the restroom is handling items on the counter.
 H: One man is merely passing by the restroom.

Q_2^{causal} : Why is the man to the left of the man standing in the middle positioned that way?
 A: He is waiting for the right moment to act immediately after his companion completes the task.
 B: He stands there to avoid being caught on the front face by the cameras in the room.
 C: He is actually helping the man who seems to be unwell to keep his balance.
 D: He is making a strategic deployment for a secret operation.
 E: He is just adjusting his body's center of gravity to maintain an alert posture.
 F: The color of the lining of his suit coordinates very well with the environment.
 G: He stands there just to observe the reaction of the man in the middle.
 H: He is not carrying out any secret deployment, but is observing the exit.

Causal Segment 3

Q_3^{desc} : What mainly happens among these men?
 A: They are having a friendly physical training session.
 B: The floor of the room is very smooth and reflective.
 C: One man is helping another man do stretching exercises.
 D: A fierce physical fight is taking place among these men.
 E: These men are negotiating calmly and no conflicts have occurred.
 F: They are apologizing to each other due to an accidental collision.
 G: The movements of the characters in the picture are blurry, indicating rapid movement.
 H: One of the men is falling down.

Q_3^{causal} : Why did the physical conflict in the restroom suddenly break out?
 A: The man in the middle suddenly made a move, trying to snatch an item from one of them.
 B: One of the men wearing a dark suit suddenly launched a hidden attack during the contact, triggering a fight.
 C: They did not break out into a physical conflict; instead, they were performing a difficult collaborative act.
 D: The mirror in the restroom vibrated due to the fight and made a noise.
 E: There had been a long-standing conflict between them, and at this moment, the conflict finally erupted.
 F: One of the men accidentally bumped into another man, leading to an unexpected friction.
 G: Due to rapid movement and chaos, their actions look like they are fighting.
 H: The conflict broke out because they failed to reach an agreement on the negotiation that had already taken place before.

Details: Annotation Strategy

Taxonomy-Based Distractor Generation

- For each question, we first define **several typical error types**. Distractor options are then systematically generated to cover these categories.
- GPT-4o generates** plausible but incorrect alternatives that are contextually relevant and semantically similar to the correct answer.
- Human annotators review** and edit these distractors, ensuring they are non-trivial, factually sound, and that each distractor fits its intended error type and maintains comparable plausibility.

Q_2^{desc} : What are the men primarily doing in the restroom?

A: One man is fixing his hair before leaving the restroom. *Temporal Confusion*

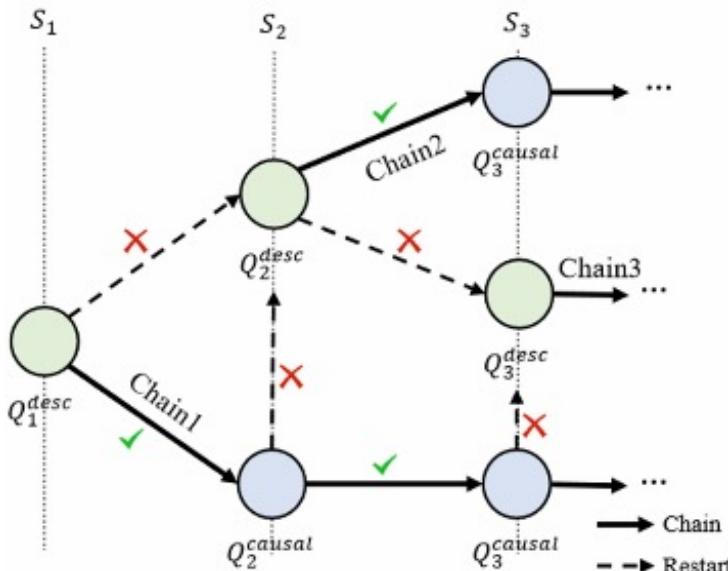
B: They gather in the restroom to conduct a secret transaction. *Causal Misattribution*

C: One man is talking to a female server. *Object / Actor Misrecognition*

D: The restroom has many white stalls and tiles. *Irrelevant but Plausible*

E: One man walks past the restroom, while the other handles items on the counter. *Correct Answer*

F: Many men are wearing business suits and shirts. *Surface-level Distraction*


G: No one in the restroom is handling items on the counter. *Negation / Polarity Error*

H: One man is merely passing by the restroom. *Incomplete Reasoning*

Details: Evaluation Mechanism

CausalStep Evaluation Framework

- **Five key metrics:**
 - Chain Success Rate (CSR)
 - Average Maximum Chain Length (AMCL)
 - Maximum Chain Length (MCL)
 - Restart Frequency (RF)
 - Weighted Score (WS)
- **Two supplementary indicators:**
 - Descriptive Understanding Accuracy (DUA)
 - Isolated Causal Reasoning Accuracy (ICRA)

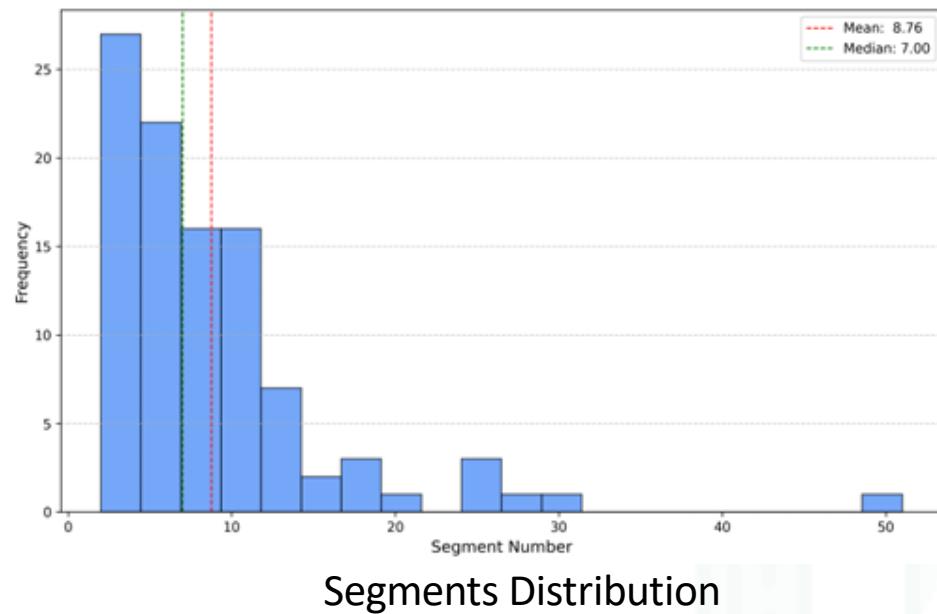
Algorithm 1 CausalStep Evaluation Framework

Input:

Segments $[S_1, S_2, \dots, S_N]$;
 Descriptive QA list $[Q_1^{desc}, Q_2^{desc}, \dots, Q_N^{desc}]$;
 Reasoning QA list $[Q_2^{causal}, \dots, Q_N^{causal}]$;
 Model M

Output:

```


1 score  $\leftarrow 0$ ;
2 chain_length  $\leftarrow 0$ ;
3 i  $\leftarrow 1$ ;
4 current_question_type  $\leftarrow 'desc'$ ;
5 while i  $\leq N$  do
6   if current_question_type == 'desc' then
7     desc_ans  $\leftarrow M.\text{Answer}(Q_i^{desc}, S_i)$ 
8     if is_correct(desc_ans) then
9       chain_length  $\leftarrow chain\_length + 1$ ;
10      score  $\leftarrow score + 1$ ;
11      i  $\leftarrow i + 1$ ;
12      current_question_type  $\leftarrow 'causal'$ ;
13    else
14      chain_length  $\leftarrow 0$ ;           // Restart
15      i  $\leftarrow i + 1$ ;
16      current_question_type  $\leftarrow 'desc'$ ;
17  if current_question_type == 'causal' then
18    if i > N then
19      break;
20    causal_ans  $\leftarrow M.\text{Answer}(Q_i^{causal}, A_{i-1}, [S_{i-1}, S_i])$ 
21    if is_correct(causal_ans) then
22      chain_length  $\leftarrow chain\_length + 1$ ;
23      score  $\leftarrow score + chain\_length$ ;
24      i  $\leftarrow i + 1$ ;
25      current_question_type  $\leftarrow 'causal'$ ;
26    else
27      chain_length  $\leftarrow 0$ ;           // Restart
28      i  $\leftarrow i + 1$ ;
29      current_question_type  $\leftarrow 'desc'$ ;
30 return: score;

```

Details: Data Statistics

- **100 videos** (average duration 430.5 seconds, ranging from 149 to 994.4 seconds)
- **6 diverse categories** (Cartoons, Movies & TV Shows, Outdoor Sports, Regular Sports)
- An average of **8.76 causal segments** (ranging from 2 to 51 segments per video)
- A total of **1,852 multiple-choice QA pairs**, covering descriptive understanding questions and causal reasoning questions
- Each question **averages 8 options**, including 1 correct answer and 7 challenging distractors

Statistic	Value
#Videos	100
Video duration (mean)	430.5 s
Video duration (min / max)	149 s / 994.4 s
#QA pairs	1,852
QA type	Multiple-choice
Options per question	8
#Categories	6
Avg. segments per video	8.76
Segments per video (min / max)	2 / 51
Annotation	AI-assisted + Manual
Distractor design	Error-type taxonomy
Descriptive QA pairs	926
Reasoning QA pairs	926

Main Results

We provide the performance of a diverse set of open-source and proprietary models, alongside human baselines.

Model	CSR(%) \uparrow	AMCL \uparrow	MCL \uparrow	RF \downarrow	WS \uparrow	DUA(%) \uparrow	ICRA(%) \uparrow
<i>Open-source models</i>							
LLaVA-Onevision [18]	7	5.20	4	3.14	30.85	67.1	15.2
Video-LLaVA [25]	10	5.15	5	3.13	32.94	68.6	20.1
Phi4-multimodal-instruct [1]	13	5.33	4	3.01	33.78	70.1	21.4
Qwen2.5-VL-7B [45]	16	5.61	9	2.68	35.42	71.0	21.8
InternVL3-8B [52]	19	5.59	8	2.87	35.26	69.2	23.1
Gemma3-12b-it [16]	21	5.53	11	2.81	36.22	72.9	24.5
InternVL3-38B [52]	24	5.75	13	2.57	36.89	75.3	25.1
Qwen2.5-VL-72B [45]	26	5.89	17	2.47	37.69	76.1	25.2
Gemma3-27b-it [16]	29	5.94	20	2.42	37.64	77.7	26.3
<i>Proprietary models</i>							
Gemini-2.0-Flash [34]	31	6.04	21	2.45	39.60	79.4	27.1
Claude-3.5-Sonnet-20241022 [2]	35	5.87	23	2.37	38.58	80.9	28.5
GPT-4o-2024-11-20 [29]	39	5.94	23	2.17	38.88	80.0	29.7
Gemini-2.0-Flash-thinking [34]	41	6.15	25	2.15	40.65	81.1	30.2
GPT-4.1-2025-04-14 [31]	42	6.63	26	1.85	45.59	82.8	32.3
Gemini-2.5-Flash [10]	48	6.90	27	1.68	47.63	84.6	36.2
o4-mini-2025-04-16 [32]	51	7.19	30	1.69	55.06	85.2	39.8
<i>Best Performance of Models</i>	51	7.19	30	1.68	55.06	85.2	39.8
<i>Human</i>	79	8.03	46	0.74	62.39	92.0	76.8
<i>Maximum</i>	100	8.76	51	0	68.76	100.0	100.0

Analysis and Discussion

Experimental analysis: MLLMs' Strengths and Limitations in CausalStep

- A **substantial and persistent gap** between current **MLLMs and human-level performance** across all diagnostic metrics, underscoring the demanding nature of the CausalStep benchmark.
- Current models **struggle to perform accurate causal reasoning** when presented solely with an isolated segment pair, without the benefit of a preceding, correctly established reasoning chain.
- Even **the most advanced proprietary models remain considerably behind human-level performance**.
- We believe that CausalStep will serve as a vital tool to inspire and guide the community in **pushing the boundaries of video reasoning and advancing towards human-level causal intelligence** in complex, real-world scenarios.

AAAI 2026
January 20 – 27, 2026
Singapore

Thanks for listening!

2026.01.25 in Singapore

Dr. Shiyu Hu

- Research Fellow in Nanyang Technological University (NTU)
- <https://huuuuusy.github.io/>
- shiyu.hu@ntu.edu.sg

Scan to download
this slides

WeChat for the
first author