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Abstract

Visual Language Tracking (VLT) enhances single object
tracking (SOT) by integrating natural language descriptions
from a video, for the precise tracking of a specified object.
By leveraging high-level semantic information, VLT guides
object tracking, alleviating the constraints associated with
relying on a visual modality. Nevertheless, most VLT bench-
marks are annotated in a single granularity and lack a co-
herent semantic framework to provide scientific guidance.
Moreover, coordinating human annotators for high-quality
annotations is laborious and time-consuming. To address
these challenges, we introduce DTLLM-VLT, which auto-
matically generates extensive and multi-granularity text to
enhance environmental diversity. (1) DTLLM-VLT gener-
ates scientific and multi-granularity text descriptions us-
ing a cohesive prompt framework. Its succinct and highly
adaptable design allows seamless integration into various
visual tracking benchmarks. (2) We select three prominent
benchmarks to deploy our approach: short-term tracking,
long-term tracking, and global instance tracking. We of-
fer four granularity combinations for these benchmarks,
considering the extent and density of semantic informa-
tion, thereby showcasing the practicality and versatility of
DTLLM-VLT. (3) We conduct comparative experiments on
VLT benchmarks with different text granularities, evalu-
ating and analyzing the impact of diverse text on track-
ing performance. Conclusionally, this work leverages LLM
to provide multi-granularity semantic information for VLT
task from efficient and diverse perspectives, enabling fine-
grained evaluation of multi-modal trackers. In the future,
we believe this work can be extended to more datasets to
support vision datasets understanding.
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OTB Crowds Official annotation: “the rightmost pedestrian in white”

OTB Human5 Official annotation: “people on the right next to a big tree”

#1 #300 #600

#1 #100 #200
a

b

Misleading text

Misleading text Misleading text

No qualified target
OTB bolt-2 Sequence length: 293 Official annotation: “runner in the middle with white shirt”

#1 #300 #600

Multiple qualified target Multiple qualified target

LaSOT airplane-1 Sequence length: 2788 Official annotation: “white airplane landing on ground”

#1 #300 #600

Misleading text Multiple qualified target

#1 #2400 #11110

Complex text Complex text

MGIT  362 Sequence length: 12703 Official annotation: “A white goose walks to a room in the yard, 

and then the goose is fed by a man with blue jeans in the room. After that, the goose walks to a basin filled with water, and

plays in the basin. Then the goose walks to a small pond with many goldfish in the yard, and plays in the pond. Finally, the 

goose walks to a lake, and plays in the lake.”

Figure 1. Examples of video content and semantic descriptions
on OTB99 Lang [13], LaSOT [10], and MGIT [8] benchmarks.
The green bounding box (BBox) indicates ground truth, while the
red dashed BBox indicates other objects that satisfy the seman-
tic description. (a) and (b) are short sequences in OTB99 Lang
with simple narrative content. Besides, their semantic annotations
mainly describe the first frame, which may misguide the algo-
rithm. (c) Comparison of different text annotations, video length,
and content on three benchmarks. The VLT environment is com-
plex, variable and most of them suffer from issues of inconsistent
text styles and single annotation granularity.

1. Introduction

Single object tracking (SOT) is a crucial computer vision
task focused on tracking a moving object within a video
sequence. Researchers have consistently observed the lim-
ited performance of most trackers in long videos with more
complex video content. Moreover, relying solely on a vi-
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sual modality greatly constrains the versatility of such sys-
tems. Consequently, several studies have begun providing
semantic annotations for the SOT task, leading to the emer-
gence of the visual language tracking (VLT) task. The pro-
posal of VLT task helps the research of SOT to be more
human-like and broaden its application prospects. Natural
language, in contrast to bounding boxes (BBox), provides a
more user-friendly and intuitive way of describing objects,
allowing for precise descriptions ranging from spatial lo-
cations to high-level semantic details to improve tracking
performance. When defining the VLT task, researchers in-
corporate text annotations from two main viewpoints:

(1) Short text annotation. Representative VLT bench-
marks such as OTB99 Lang [13], TNL2K [12], and LaSOT
[10, 11] primarily employ short text. This concise style
of description is clear and uncomplicated, facilitating the
learning and comprehension of VLT trackers. The utiliza-
tion of short text offers the benefit of simplicity and en-
hanced comprehension for VLT trackers. However, these
methods are prone to imprecise semantic descriptions and
potential ambiguities. As illustrated in Fig. 1 (a) and (b),
the description only captures the state of the object at the
sequence beginning. As the object moves, the positional
constraint in the semantic information becomes misleading.
The reason lies in the benchmark focus primarily on the ini-
tial state of the object, neglecting changes in the object’s
motion throughout the video. Consequently, semantic de-
scriptions may become restrictive later in the sequence.

(2) Long text annotation. MGIT [8] adopts a multi-
granular semantic annotation strategy from the perspective
of more precise semantic descriptions, providing a way to
annotate complex spatio-temporal causal relationships in
long videos. Compared to other benchmarks, this style ex-
hibits two characteristics: longer text and periodic updates,
evolving from simple to dense, detailed descriptions. How-
ever, this approach faces challenges like time-intensive text
annotations and the need for algorithms with robust text
processing and multi-modal alignment capabilities to effec-
tively utilize the information. As shown in Fig. 1 (c), the
text in MGIT is overly long and complex. Clearly, although
the motivation of these works is to extend SOT task to multi-
modal one to enhance tracking performance, the disparate
styles and singular granularity across most studies not only
hinder algorithms from achieving the desired outcomes but
also escalate the complexity of research on VLT task.

In summary, diverse motivations in existing research re-
sult in varying approaches to integrating textual informa-
tion. In Fig. 1 (c), the three prominent benchmarks differ
in sequence length, text style, and annotation granularity.
Imposing a single standard mechanism for VLT research
appears impractical, given the inherent flexibility and vari-
ability in human comprehension and processing of multi-
modal information. Humans can adeptly leverage various

types of multi-modal information. Rather than enforcing
a rigid task format, optimal design should furnish algo-
rithms with comprehensive environmental data to explore
their capabilities and limitations.

By offering diverse text descriptions of the environ-
ment—encompassing short, long, sparse, and dense for-
mats—and evaluating algorithm performance across these
descriptions, we can effectively discern the strengths and
weaknesses of existing methods under different semantic
granularities, thereby guiding the enhancement of multi-
modal algorithms. What excites us is that the Large Lan-
guage Model (LLM) can facilitate the achievement of this
goal. By seamlessly integrating the LLM into the text gen-
eration process, we can offer a varied multi-modal environ-
ment conducive to VLT research.

Our work focuses on the aforementioned motivations
and designs DTLLM-VLT to achieve diverse text genera-
tion for tracking datasets. Specifically, we combine text
length and generation density to form four granularities
with a uniform style. Based on this, we select MMTrack
[23], a state-of-the-art (SOTA) VLT tracker, for experimen-
tal analysis to verify the impact of diverse texts on algorithm
performance. The experimental results not only demon-
strate that this diversified environment can assist in fine-
grained evaluation and analysis of algorithm capabilities but
also suggest the possibility of further enhancing the multi-
modal learning capabilities of algorithms using generated
data in the future.

The contributions of this paper can be summarized in the
following three aspects:
• We develop DTLLM-VLT, a model based on LLM, aimed

at efficiently generating high-quality scientific text for
tracking datasets at scale. DTLLM-VLT can seamlessly
apply to various tracking tasks.

• We generate diverse text for three prominent VLT bench-
marks, addressing four levels of granularity. This ap-
proach overcomes the limitations of previous bench-
marks, which focused on a single granularity and lacked
a unified semantic framework.

• We conduct an experimental analysis to evaluate the im-
pact of diverse texts on algorithm performance. The re-
sults highlight the benefits of a diversified environment
and indicate the potential for enhancing multi-modal
learning through generated text data.

2. Related Work
2.1. Single Object Tracking Benchmark

The SOT task involves initializing and tracking a specific
object within a video sequence. It begins by identifying the
object through its BBox in the first frame and then proceeds
to locate and follow the object across subsequent frames.
Since 2013, several benchmarks such as OTB [14, 15]



Table 1. Summary of current popular tracking benchmarks and Comparison number of language description between official and our
generated text. Italics indicate automatic generation. We provide far more diverse semantic information than the original annotations for
representative environments.

Dataset Number of Videos Number of Language Description
Train Evaluation Official Dense Concise Dense Detailed Initial Concise Initial Detailed

OTB99 Lang [13] 51 48 99 596 596 99 99
LaSOT [10] 1,120 280 1,400 35.2K 35.2K 1,400 1,400
TNL2K [12] 1,300 700 2,000 12.4K 12.4K 2,000 2,000

MGIT1[8] 105 45 1,753 16.1K 16.1K 120 120
1 As the ground truth of the MGIT [8] test set is not open-sourced, we only generated text for 120 video of the training and validation sets.

and VOT [3, 7] have been introduced, providing standard-
ized datasets and scientific evaluation mechanisms to sup-
port SOT research. However, with the advancements in
deep learning techniques, these short-term and small-scale
benchmarks have faced challenges in adequately accom-
modating data-driven trackers. Consequently, researchers
have started designing larger-scale datasets such as GOT-
10k [16] and TrackingNet [6]. Additionally, efforts have
been made to gather data featuring long videos, leading to
the creation of long-term tracking benchmarks like OxUvA
[17] and VOT LT [4, 5]. Some work has also focused on
SOT in drone scenarios, such as BioDrone [19], a vision
benchmark for SOT based on bionic drones. Recently, re-
searchers have acknowledged that traditional approaches to
both short-term and long-term tracking are based on the
premise of constant movement, a factor that restricts test-
ing to situations involving a single camera view and a static
scene. To expand beyond these limitations, they have intro-
duced the global instance tracking task along with a novel
benchmark called VideoCube [18], which enables the track-
ing of arbitrary moving objects in various types of videos.
To scientifically evaluate the performance of trackers under
different challenging factors, researchers have introduced
SOTVerse [9], a user-defined space for SOT task.

2.2. Visual Language Tracking Benchmark

While visual benchmarks have undergone significant evo-
lution over the past decades, benchmarks integrating vi-
sual and semantic information, known as VLT benchmarks,
have only recently gained traction. OTB99 Lang [13]
stands out as the first VLT benchmark, enhancing sequences
from the OTB100 [15] benchmark with additional natu-
ral language descriptions. However, the limited scale of
the dataset has hindered the widespread adoption of the
VLT task. Subsequently, the release of LaSOT [10, 11],
a long-term tracking benchmark with natural language an-
notations, marked a significant development. Concurrently,
researchers introduced the TNL2K [12] benchmark in the
same year, aiming to enhance object tracking flexibility
and accuracy through text descriptions. Following these
efforts, researchers proposed a new multi-modal bench-

mark named MGIT [8], which fully represents the complex
spatio-temporal and causal relationships present in long nar-
rative content through a multi-granular annotation strategy.
These three benchmarks have enriched the pool of available
data and facilitated the development of various VLT track-
ers.

2.3. Algorithms for Visual Language Tracking

VLT emerges as a burgeoning multi-modal task aiming to
achieve tracking by leveraging both a language description
and an initial template patch. Following the principle of
similarity-matching, most existing VLT methods [24–30]
utilize language descriptions and template patches as ref-
erences to identify the most similar object in the search
frame. Among these methods, SNLT [21] presents an
adaptable language-based region proposal network that im-
proves tracking accuracy by employing a dynamic aggre-
gation mechanism. Meanwhile, MMTrack [23] introduces
a streamlined and effective tracking method, treating the
VLT task as a sequence of token generation. However,
these methods often fail to capture the dynamic proper-
ties of the object, which becomes a critical issue for robust
tracking when the object’s appearance undergoes signifi-
cant changes. To overcome this shortcoming, some VLT
trackers have begun to integrate temporal data to estab-
lish a more dynamic reference. For instance, GTI [22] and
AdaSwitcher [12] identify object by merging tracking and
localization outcomes at every time interval. JointNLT [20]
also takes a step towards this by including temporal infor-
mation as queries during the prediction phase.

Most benchmarks for VLT provide only one natural lan-
guage description per video. Additionally, the existing
benchmarks suffer from inconsistent text annotation styles,
leading to varied mechanisms for incorporating text in-
formation. These discrepancies hinder algorithm evalua-
tion and comprehension of video content. Moreover, these
works all provide semantic information in the form of man-
ually annotated data, which is a time-consuming and labor-
intensive process.



Figure 2. Comparison of Manual Annotation and Automatic Generation and Framework of DTLLM-VLT. (a) Manual annotation relies
on human labor, only provides one text annotation for each video segment, and cannot guarantee a uniform style. The cost of large-scale
annotation is too high. (b) Automatic Generation can generate diverse text on a large-scale in a unified style. (c) The DTLLM-VLT can
provide dense concise/detailed text generation based on given video frames and BBox of object.

3. Text Generation by LLM

To provide diverse text generation for VLT datasets under
a unified prompt framework and provide algorithms with
more scientific text for evaluation and understanding video
content, we implement DTLLM-VLT to offer large-scale
automatic diverse generated text.

Number of words: 1,922,729
non-repetitive words: 14,822

Figure 3. The word cloud of semantic descriptions and word count
statistics.

3.1. Generation Strategy

The volume and linguistic annotations of the VLT dataset
determine the quality and generality of learned visual lan-
guage representations. Table 1 illustrates that the dataset
comprises only 3,649 videos, specifically 1,400 from La-
SOT [10], 2,000 from TNL2K [12], 99 from OTB99 Lang
[13], and 150 from MGIT [8], which are used for training
and testing. These videos are accompanied by 5,252 official
text descriptions. However, this amount of data is deemed
insufficient for algorithms to effectively learn.

These official annotation suffers from inconsistency in
style, and are only able to describe short-term changes for
the object. The varying annotation styles of the text descrip-
tions make it difficult for trackers to learn general visual
language information, resulting in a significant performance
drop when inferring on new videos with non-official anno-
tations or different language description styles. Moreover,
inaccurate text descriptions hinder object tracking, turning
natural language annotations into a hindrance rather than a
support.

To enhance the accuracy and generality, we propose
DTLLM-VLT, which generates text in a consistent style for
four datasets, establishing a robust foundation for VLT. This



a person walking on 
the sidewalk1

A person is seen walking away from the camera. She is wearing a white shirt and a helmet, indicating she might be a pedestrian. 
She is located towards the right side of the image, a bit further in the background1

a person walking on 
the sidewalk1 100

a person in a white 
shirt200

a person in white
300

A person is seen walking away from the viewer's perspective. She is wearing a white shirt and appears to be in motion. She is
located towards the left side of the image, and her back is turned towards us.200

A person is seen walking away from the camera. She is wearing a white shirt and black pants, and his back is 
turned towards us. She appears to be in motion, perhaps walking towards the right side of the image.

300

A person is seen walking away from the camera. She is wearing a white shirt and a helmet, indicating she might be a pedestrian. 
She is located towards the right side of the image, a bit further in the background1

A person, dressed in a white shirt, is seen walking across the busy street. She is located in the middle of the 
scene, amidst the bustling traffic, and is one of the several pedestrians making their way across the street.

100

Initial concise
first frame

Initial detailed
first frame

Dense concise
every 100 frame

Dense detailed
every 100 frame

C

D

A

B

a person in a white 
shirt

Figure 4. Examples of the four types of generated text. We provide four different natural language descriptions for each video. The object
to be tracked is determined in the first frame and does not change throughout the video sequence.

generation approach can be expanded to additional VLT
datasets and even applied to text generation in SOT datasets.

Initial and dense text descriptions. Following the text
annotations method in OTB99 Lang [13] and TNL2K [12],
we generate text for the initial frame of each video. Addi-
tionally, given that 4 seconds marks the threshold between
human instant memory and short-term memory [35–37],
we consider the worst situation and infer that the algorithm
lacks an efficient memory system. Consequently, at 25 FPS,
equating to every 100 frames in 4 seconds, we supply the
algorithm with relevant generated text. We posit that this
update frequency optimally sustains the memory state of al-
gorithm and enhances tracking performance.

Concise and detailed text descriptions. For the algo-
rithm, if the BBox already sufficiently describes the tempo-
ral and spatial changes of the object, the text descriptions
should focus on providing essential semantic details like
the category and positions of the object. In cases where
the BBox lacks sufficient information for effective learning
by the tracker, more elaborate texts are necessary to com-
pensate for the missing temporal and spatial relationships.
Consequently, we generate two types of text descriptions:
concise and detailed. As illustrated in Fig. 2, the concise
text conveys essential information about the object, such as
its category (bear) and position (in the water), while the

detailed text includes additional spatio-temporal details like
color, relative position, and actions.

3.2. DTLLM-VLT

The traditional VLT datasets rely on manual text annota-
tions, as shown in Fig. 2 (a), providing a corresponding
natural language description for each video. This method
incurs high annotation costs, lacks uniformity in style, in-
volves a single annotation granularity, and cannot be used
for large-scale data annotation. To address these issues, we
design DTLLM-VLT based on SAM [31] and Osprey [32],
which can provide large-scale and diverse text generation
like Fig. 2 (b).

The framework of the DTLLM-VLT is illustrated in
Fig. 2 (c). Input video frames and corresponding object
BBox, SAM [31] utilizes image encoder, prompt encoder,
and mask decoder to obtain masks of the corresponding ob-
ject and then input the video frames and mask into Osprey
[32]. Osprey encodes the images and masks, combines with
preset prompts, and generates concise and detailed descrip-
tions of the corresponding object through LLM [33, 34].
Through this approach, we can generate large-scale, di-
verse granularities, and uniform style text for SOT and VLT
datasets at very low costs.



3.3. Generation Analysis

Combining the aforementioned strategies, we offer four
granularities of natural language descriptions for each
video, namely initial concise description, initial detailed de-
scription, dense concise description, and dense detailed de-
scription, as illustrated in Fig. 4. Our goal is to incorporate
multiple granularities of text to enrich the environment for
algorithm to learn and evaluate, while also providing guid-
ance for algorithm design and model optimization.

Leveraging the DTLLM-VLT, we generate text descrip-
tions comprising 7,238 initial descriptions (3,619 concise
and 3,619 detailed descriptions each) and 128.4K dense de-
scriptions (64.3K concise and 64.3K detailed descriptions
each). Our dense texts are 24.4 times the quantity of the offi-
cial annotations. Further details regarding the number of se-
mantic descriptions are presented in Table 1. The semantic
descriptions contain 1.9M words with 14.8K non-repetitive
words. The vocabulary is rich, allowing for a comprehen-
sive description of changes in the object during the tracking
process. Word cloud and more detailed analyses have been
illustrated in Fig. 3.

3.4. Speed and Memory Usage

We generate diverse text for visual language tracking
datasets on RTX-3090 GPUs, with approximately 16GB of
VRAM usage. It takes about 2 seconds to generate a text
entry for each frame.

Compared to manual annotation, DTLLM-VLT can gen-
erate texts of various granularities for large-scale tracking
datasets in a short period of time. And it can seamlessly
apply to various tracking tasks.

4. Experimental Results
4.1. Datasets and Evaluation Methods

Datasets. We selected three representative datasets,
OTB99 Lang [13], LaSOT [10], and MGIT [8], for evaluat-
ing short-term tracking, long-term tracking, and global in-
stance tracking task. OTB99 Lang [13] and LaSOT [10] are
expanded from the traditional SOT benchmark by adding
language annotations. OTB99 Lang serves as a represen-
tative dataset for short-term tracking task, providing a text
description for the initial frame of each video sequence. La-
SOT is a representative dataset for long-term tracking task.
Its text annotations only describe the appearance of the tar-
get, omitting relative positions. MGIT [8] is a novel large-
scale benchmark specifically tailored for the global instance
tracking task. Text annotations of each sequence contain
complex spatio-temporal causal relationships with a multi-
granular annotation strategy.

Evaluation Methods. As shown in Fig. 4, we follow
generation granularities to design various mechanisms. We
select a SOTA visual language tracker, MMTrack [23] as

a baseline model and evaluate it on three benchmarks (as
shown in Table 2 and Table 3). Compared with other al-
gorithms, MMTrack [23] does not impose restrictions on
the length of the text and does not truncate excessively long
text. Additionally, it unifies the VLT task as a form of to-
ken generation, which is more conducive to learning visual
language information.

To fairly compare the tracking performance on three
datasets, we directly use the officially provided weights to
test with the official annotations, initial concise texts, initial
detailed texts, dense concise texts, and dense detailed texts.
We also retrain and test the model under the corresponding
settings to evaluate Area Under the Curve (AUC), tracking
precision (P), and normalized precision (PNorm).

4.2. Tracking Results

We evaluate MMTrack [23] on three benchmarks, includ-
ing OTB99 Lang [13], MGIT [8], and LaSOT [10] with five
text granularities to evaluate the influence of diverse gener-
ated text on tracking performance. All experiments employ
joint language and BBox initialization.

4.2.1 Testing Directly

We directly use the model provided by the official for test-
ing, and the test results are as shown in Table 2.

Short-term tracking. In Table 2, when comparing re-
sults on OTB99 Lang [13], which only provides the text
description of the initial frame and will interfere with the
tracking of the object in the later stage, our initial concise
text achieves gains of 1.6 %, 2.2 %, and 1.6 % in area un-
der the curve, normalized precision, and precision score,
respectively. At the same time, we find that dense concise
text also helps improve tracking performance, for example,
our generated text achieves improvements of 1.2 % in the
area under the curve. We think that the short-term tracking
datasets represented by OTB99 Lang [13], their BBox can
effectively describe the temporal and spatial relationships in
the visual modality. If only the text from the initial frame
is used and cannot describe the temporal and spatial rela-
tionships of the object in the following frame, it will cause
significant interference. The same problem arises in our de-
tailed initial concise/dense text description testing. In this
case, the text only needs to be as concise as possible to assist
in improving tracking performance.

Long-term tracking. The official text annotation of La-
SOT [10] only describes the appearance of the object, ig-
noring the relative position. Compared to OTB99 Lang
[13], the text description of the object is more accurate.
Compared with MGIT [8], there is no excessive interfer-
ence from relative position information. It represents a bal-
ance between the two and is most in line with the current
algorithm learning method. Therefore, the test performance



Table 2. Comparison with testing directly on three popular benchmarks: OTB99 Lang [13], MGIT [8], and LaSOT [10]. The best two
results are highlighted in red and blue, respectively.

Method OTB99 Lang [13] MGIT [8] LaSOT [10]
AUC PNorm P AUC PNorm P AUC PNorm P

Official 69.0 82.0 89.5 73.5 77.2 54.3 69.9 82.2 75.7
Initial Concise 70.6 84.2 91.1 73.9 77.8 54.9 69.0 81.1 74.7
Initial Detailed 68.0 81.5 88.4 72.7 76.2 53.4 68.7 80.7 74.4
Dense Concise 70.2 84.0 90.8 74.2 77.9 55.0 69.1 81.3 74.8
Dense Detailed 68.6 82.4 89.4 72.9 76.6 53.5 69.0 81.1 74.7

Table 3. Comparison with retraining and testing respectively on three popular benchmarks: OTB99 Lang [13], MGIT [8], and LaSOT [10].
The best two results are highlighted in red and blue, respectively.

Method OTB99 Lang [13] MGIT [8] LaSOT [10]
AUC PNorm P AUC PNorm P AUC PNorm P

Official 69.0 82.0 89.5 73.5 77.2 54.3 69.9 82.2 75.7
Initial Concise 70.0 84.3 90.5 73.6 77.4 54.2 69.6 81.8 75.4
Initial Detailed 70.3 85.6 91.4 74.1 78.3 54.5 69.4 81.5 75.1
Dense Concise 71.3 86.0 92.5 74.0 77.6 54.2 69.5 81.6 75.3
Dense Detailed 69.8 84.8 90.6 74.4 78.5 54.6 69.8 82.1 75.6

with official annotation is the best. However, we believe that
for long-term tracking, providing only a single sentence of
text is not conducive to algorithm learning. And the spa-
tial relationships of the object are crucial. When there are
large-scale and diverse VLT datasets and better approaches
to enhancing video understanding capabilities of algorithm,
this situation observed in LaSOT [10] will soon change.

Global instance tracking. The same situation as
OTB99 Lang [13] appeared on MGIT [8], that is, the per-
formance is improved when tested under initial/dense con-
cise text annotations. Particularly, dense concise annota-
tion excels over the official text, surpassing it by 0.7 %, 0.7
%, and 0.7 % in area under the curve, normalized preci-
sion, and precision score, respectively. MGIT [8] provides
high-quality, multi-granularity long texts containing com-
plex temporal and spatial relationships. From the test re-
sults, we think that the handling of long texts and multi-
modal alignment in the current algorithm requires improve-
ment, as it fails to fully leverage temporal and spatial rela-
tionships. Therefore, concise text can actually help improve
performance. However, temporal and spatial information
are crucial for long-term tracking and global instance track-
ing. When the temporal-spatial information of the BBox
cannot stably determine the object, detailed text is needed to
provide additional high-level semantic information to iden-
tify the object.

Through direct testing and comparison of tracking per-
formance under different texts, it has been observed that the
variation in texts has a significant impact on tracking perfor-

mance. The largest performance difference reached 2.2% in
normalized precision on the OTB99 Lang dataset.

4.2.2 Retraining and Testing Respectively

As mentioned earlier, when the dataset text becomes denser
and more accurate, it can compensate for BBox shortcom-
ings. The algorithm gains additional knowledge through
text updates, potentially improving performance. There-
fore, we retrained and tested MMTrack [23] using varied
generated texts, with tracking results shown in Table 3.

Short-term tracking. It can be seen that on the
OTB99 Lang [13] benchmark, the testing results after re-
training with dense concise text have shown further im-
provement. Compared with the official text, it gains 2.3 %,
4.0 %, and 3.0 % in area under the curve, normalized pre-
cision, and precision score, respectively. This indicates that
providing dense concise text on short-term datasets can fur-
ther improve tracking performance. It also reflects the ca-
pability of the current algorithm to achieve better tracking
even when provided with more accurate text, without the
need for matching learning methods. However, we believe
that the current method of training algorithms to memorize
high-frequency text for enhancing memory capabilities still
needs improvement, the potential of text has not been fully
exploited yet.

Long-term tracking. The results on the LaSOT [10]
benchmark show that official annotations are still more ad-
vantageous for tracking. However, after retraining, the re-
sults on dense detailed text are only 0.1 % from the optimal



results, indicating an improvement in the algorithm’s un-
derstanding of dense text compared to direct testing, but it
is still unable to fully learn all temporal and spatial infor-
mation.

Global instance tracking. The test results after retrain-
ing based on different texts show that the algorithm can im-
prove its tracking ability on the MGIT [8] benchmark by
learning from dense detailed text, which differs from the
results of direct testing. For global instance tracking task,
it is beneficial for tracking if the algorithm can learn more
comprehensive temporal and spatial relationships.

Comparing the above results, we can draw the following
insights:

(1) The existing algorithm tends to learn and under-
stand short text. The results of direct testing show that
concise text is more beneficial for performance improve-
ment on the OTB99 Lang [13] and MGIT [8] benchmarks.
For OTB99 Lang [13], inaccurate natural language descrip-
tions in official annotations create interference for tracking,
while concise text provides further assurance for BBox that
already expresses temporal and spatial relationships well,
reducing interference. For MGIT [8], the algorithm is un-
able to understand complex temporal relationships and can
only extract semantic information from concise text. Offi-
cial text annotations of LaSOT [10] lie between the two and
are most conducive to the current algorithm, resulting in the
best performance.

(2) For short-term tracking task, dense concise text
will bring greater gains. While dense detailed text is
more suitable for the other two tasks. Looking at the re-
sults of testing after retraining with different texts, dense
concise text has the greatest impact on OTB99 Lang [13].
We think this is because the text provides precise object
descriptions, further compensating for the shortcomings of
BBox. The algorithm can further improve its performance
on MGIT [8] by learning from dense detailed text, because
they can provide high-level semantic information that BBox
cannot exhibit, such as temporal and spatial relationships.
By text updating that best suits the memory system of al-
gorithm, we provide the algorithm with precise and timely
high-level semantic information, which is more helpful for
understanding long video.

(3) The text processing method and multi-modal
alignment ability need to be adjusted and improved. The
current algorithm cannot fully understand and learn com-
plex temporal and spatial relationships. When the text pro-
cessing and multi-modal alignment abilities of algorithm
are adjusted and improved, text with more information will
show even greater potential.

4.3. Visualization

As shown in Fig. 5, we visualize the tracking results of the
retrained model with official and dense concise text on three

OTB Crowds           

dense concise frame #100/200/300: “a person in a white shirt”, “a person in a white shirt”, “a person in white” 

OTB Human5      dense concise frame #600: “woman wearing a brown jacket”

#600 #650 #680

#100 #200 #300

OTB Bolt2            dense concise frame #200: “a man running on a track”

#215 #260 #290

Ground Truth Official Text Dense Concise Retrain

Figure 5. Visualization of tracking results on dense concise text
annotations retrained algorithm.

challenging sequences from OTB99 Lang [13]. In these se-
quences, the official text annotations can only cover a short
time for the changes in the object. The scenes contain dis-
tractors, and the appearance of the object undergoes signif-
icant changes. The retrained model exhibits greater robust-
ness with dense concise text compared to the official one.
This validates that our generated text helps tracker to ad-
dress these challenges.

5. Conclusions

Object tracking is the basis for advanced tasks such as
video understanding, and VLT may offer a potential path
for enhancing tracking capabilities. In this paper, we pro-
pose DTLLM-VLT, a unified prompt framework, and gener-
ate diverse multi-granularity text descriptions. We analyze
the results under different natural language descriptions for
three representative benchmarks, aiming to provide new in-
sights for the evaluation of different tracking tasks.

In our perspective, enhancing algorithm performance re-
quires a comprehensive understanding of the properties of
the datasets. We explore how leveraging the generative ca-
pabilities of LLM can help us improve VLT datasets and
provide a new analytical approach from a multi-modal per-
spective for the field of video understanding. We hope
this work can be expanded to incorporate more datasets,
thereby enhancing support for vision datasets understand-
ing research.
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