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Abstract—Target tracking, the essential ability of the human visual system, has been simulated by computer vision tasks.

However, existing trackers perform well in austere experimental environments but fail in challenges like occlusion and fast

motion. The massive gap indicates that researches only measure tracking performance rather than intelligence. How to

scientifically judge the intelligence level of trackers? Distinct from decision-making problems, lacking three requirements (a

challenging task, a fair environment, and a scientific evaluation procedure) makes it strenuous to answer the question. In this

article, we first propose the global instance tracking (GIT) task, which is supposed to search an arbitrary user-specified instance

in a video without any assumptions about camera or motion consistency, to model the human visual tracking ability. Whereafter,

we construct a high-quality and large-scale benchmark VideoCube to create a challenging environment. Finally, we design a

scientific evaluation procedure using human capabilities as the baseline to judge tracking intelligence. Additionally, we provide

an online platform with toolkit and an updated leaderboard. Although the experimental results indicate a definite gap between

trackers and humans, we expect to take a step forward to generate authentic human-like trackers. The database, toolkit,

evaluation server, and baseline results are available at http://videocube.aitestunion.com.

Index Terms—Global instance tracking, single object tracking, benchmark dataset, performance evaluation, human tracking ability

Ç

1 INTRODUCTION

TARGET tracking, the ability to follow a moving object
with the human eyes, is the basic function of the

human visual system. Research reveals that a baby can
master this skill at only a few weeks of age and quickly
expand from tracking salient objects (e.g., a brightly col-
ored toy) to arbitrary objects (e.g., a decoration on the
clothes of parents) [6], [7]. Inspired by the powerful

human visual system and eye-catching artificial intelli-
gence technology, researchers have proposed a series of
visual tasks to locate moving targets in the real environ-
ment. Several existing computer vision tasks, such as sin-
gle object tracking (SOT [8]), multi-object tracking (MOT
[9]), and visual instance detection (VID [10]), simulates
human target tracking ability to locate moving targets in
the natural environment, and are widely used in animal
behavior observation [11], [12], [13], [14], medical
research [15], [16], [17] and robot navigation [18].

However, challenging conditions like occlusion, fast
motion, and weak illumination reduces the performance of
existing methods. Take automatic driving as an example -
several crashes happened at night or under bright light con-
ditions due to the limit in visual perception robustness of
trackers, which contrasts to the high performance judged by
the vision task benchmarks. In other words, existing experi-
mental environments only measure performance rather
than intelligence, far away from the actual applications. A
natural question is, how to scientifically measure the track-
ing intelligence of an algorithm?

The imitation game proposed by Alan Turing in 1950 [19],
which is usually called the Turing test, is a recognized stan-
dard to judge machine intelligence. Recently, the agents rep-
resented by AlphaGo (Go game [20] AI) and DeepStack
(Poker game [21] AI) have defeated the top human profes-
sional players in decision-making problems, and become the
landmark results of the Turing Test. From these works, we
can summarize three requirements for machine intelligence
measurement: (1) a challenging task (e.g., Go game is diffi-
cult for both humans and machines); (2) a fair competition
environment (e.g., human and machine compete in the
Go game with equal rules); and (3) a scientific evaluation
procedure (e.g., players with a larger number of vacant
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intersections and captured stones win the Go game). Never-
theless, the existing target tracking area lacks these three
points, making it strenuous to evaluate visual intelligence.

For the first requirement, a proper task is essential to esti-
mate visual tracking intelligence. Simple assignments (such
as tracking a black dot on awhite screen) cannot reflect intelli-
gence, while unmanageable tasks (such as tracking an ant in a
colony with a shaking camera) are almost impossible for
humans to execute. Therefore, the reasonable idea is to design
a moderately difficult task based on human visual tracking
ability. Clearly, people can unconsciously locate an arbitrary
instance in random scenarios, while the existing tasks always
contain strong constraints on target categories (MOT, VID) or
scenarios (SOT).

As the second requirement, a suitable benchmark needs to
reflect the characteristics of the task and simulate the natural
environment. Dynamic visual acuity, the essential human
ability to perceive moving objects, can be improved by track-
ing fast-moving targets in complex environments. Thus, a
decent benchmark should fitly reproduce the proximate real-
world conditions and provide a platform for training a
human-like tracker. However, existing tracking benchmarks
only provide a simplistic environment. Trackers generated by
these benchmarks are still far from the human visual system
and cannot suit challenging realistic conditions like occlusion,
fastmotion, andweak illumination.

The last requirement, a scientific evaluation system,
should set targets (machine and human) into the same envi-
ronment and measure their tracking capabilities with rea-
sonable indicators. Unlike Go and poker games with clear
rules, trackers and humans have exceptionally distinct
ways of performing visual tracking tasks. Algorithms usu-
ally process the video frame by frame and return bounding
boxes to locate the object, while humans directly focus their
sight on the target. Existing benchmarks are all designed for
evaluating algorithms but lack standards for measuring
human tracking ability. Lacking the comparison with
humans means we cannot measure the intelligence level of
algorithms accurately.

Based on the above three problems, this work evaluates
tracking intelligence degree for the first time by providing:

(1) A proper task to model human visual tracking ability. We
introduce global instance tracking (GIT), a new task of searching
an arbitrary user-specified instance in a video without any
assumptions on camera or motion consistency, to accurately
model the human tracking ability. Unlike the existing video-
related tasks, GIT aims to find all video fragments where a
query object presents and locates its trajectories in these frag-
ments. GIT retains the category-independent advantage and
expands the boundary of the traditional SOT task to approach
object tracking in general scenes. An ideal GIT algorithm is
supposed to work in different video environments like rapid
view angle changes, frequent camera switches, or long-term
target absences. The execution flow and comparison of GIT
with other video-related vision tasks are shown in Fig. 1.

(2) A comprehensive benchmark to simulate the real world.We
provide a high-quality, large-scale benchmark VideoCube for
this novel task. It consists of 500 long-term videos that cover
different object classes, scenario types, motion modes, and
challenge attributes, with an average length of 14920 frames.
Figs. 2 to 4 illustrates that by comparing with existing visual
tracking benchmarks, VideoCube provides a proximate real-
world environment and evaluates the algorithms scientifically.

Fig. 1. The execution flow and comparison of GIT with other video-related vision tasks (VID, MOT, SOT). VID (a) and MOT (b) can only locate limited
instances, while SOT (c) and GIT (d) do not constrain the target category. Furthermore, GITexpands the SOT task by canceling the motion continuity
assumption, allowing the target to move in a broader and more complex environment. The detailed comparison of GITwith above vision tasks is listed
in e. Obviously, GIT is a new visual task without restrictions on target categories and scenarios.

Fig. 2. Comparison of VideoCube and other tracking benchmarks
(OTB2015 [1], TrackingNet [2], LaSOT [3], VOT2017 [4], GOT-10k [5]) in
the complexity of the environment, the rationality of evaluation, and the
completeness of target selection.
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(3) A scientific evaluation procedure to compare humans and
machines with reasonable indicators. In addition to evaluating
trackers via classical metrics, we judge human visual tracking
capability via an eye-tracking experiment for the first time.
Fig. 5 is the schematic diagram of the human visual tracking
experiment. Human performance is treated as a baseline to
measure the intelligence level of existing methods. The
result illustrates that SOTA trackers can perform well in a
simple situation (target with smooth movement) but fail in
difficulties (e.g., occlusion, fast motion, and weak illumina-
tion), while humans can still maintain fast and accurate
tracking with challenging factors.

Besides, we provide a comprehensive online platform at
http://videocube.aitestunion.com with systematic evalua-
tion toolkits, an online evaluation server, and a real-time
leaderboard. We believe the online platform with the
human baseline can provide researchers with more compre-
hensive assistance in visual intelligence research and take a
step forward to generate authentic human-like trackers.

The rest of this paper is organized as follows. Section 2
provides a review of video-related tasks and distinguishes
them from GIT. Section 3 introduces the design principles of
VideoCube. The experimental results and detailed analysis
are described in Section 4. Finally, we conclude this paper
and discuss future works in Section 5.

2 RELATED WORK

Capturing local motion and predicting long-term moving
trajectories of targets in a video is of great significance to
many research fields [15], [22]. Several vision tasks have
been modeled for locating moving objects in video. This sec-
tion introduces these visual tasks’ definitions, characteris-
tics, and application scenarios to distinguish them from
GIT.

2.1 Locate Specific Target Categories in Random
Scenarios

Video instance detection (VID) [10] is a fundamental prereq-
uisite for advanced visual tasks such as scene content analy-
sis and understanding. It aims to accurately determine the
category and location of each target in a video. The target
category is generally limited to the known classes in the
training dataset, but the video without any restrictions may
contain various scenes.

Multiple object tracking (MOT) [9] is a model-specific
visual task that focuses on tracking specific categories like
persons or vehicles without any prior knowledge about the
appearance and amount. The general MOT algorithm usu-
ally runs a detector to obtain the object’s bounding box in
the first frame and generate features; then calculates the
similarity to determine instances belonging to the same tar-
get and assigns a digital ID to each object.

2.2 Track Random Objects in a Single Scenario

Single object tracking (SOT) [8] intends to calculate the loca-
tion of a user-specific visual target in the video when only a
position in the first frame is available. Unlike other visual
tasks, SOT is an entirely category-independent assignment
suitable for open-set testing with broad prospects. How-
ever, the implicit motion continuity assumption limits its
actual applications. Since SOT is the vision task closest to
GIT in assignment settings, the following part introduces
the related trackers and benchmarks in detail.

Fig. 4. Comparison of VideoCube (a) and three representative tracking benchmarks (LaSOT [3] (b), GOT-10k [5] (c), OTB2015 [1] (d)) in video con-
tent, video length, number of disappearances, and the absent duration.

Fig. 3. Comparison of VideoCube and three representative tracking benchmarks (OTB2015 [1], LaSOT [3], GOT-10k [5]) in video length (a), video
resolution (b), and target resolution (c).

Fig. 5. Schematic diagram of the human visual tracking experiment.
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2.2.1 Trackers

Correlation-Filter Trackers. Correlation-filter (CF) trackers
regard the SOT task as a regression problem and achieve
high speed via fast Fourier transform (FFT) [23]. Dense
image sampling by circulant shift on a single centered
image patch is essential to implement fast training and
inference in the Fourier domain. As the first model to utilize
the correlation filter framework in object tracking, MOSSE
[24] considers this task as a regularized least-squares prob-
lem and reformulates its closed-form solution, achieving
reliable tracking performance at 700 fps. Later on, several
improvements have been proposed, including using a scale
embedding to handle scale variation [25] and improving CF
tracking via extra regularization method [26].

Deep Trackers. Recently, several methods based on deep
learning have been proposed to advance tracking perfor-
mance. Convolutional neural networks (CNNs) are the
most widely-used model, involving extracting features
through pre-trained models [27] or using end-to-end learn-
ing to generate object appearance models [28]. The siamese
trackers [28], [29] and their variants [30], [31] regard track-
ing as a feature matching task and achieve a significant
result. By learning a high dimensional metric space between
the exemplar and search patches, siamese trackers can
quickly localize the instance in a consecutive sequence.
Except for CNN-based models, some advanced deep track-
ers regard tracking as a sequential decision-making task
[32], or combine the recurrent structures to accomplish
sequential prediction [33].

2.2.2 Benchmarks

Short-Term Tracking Benchmarks. A series of benchmarks
have appeared since 2013 and provide a consolidated plat-
form for evaluating and analyzing algorithms. As one of the
earliest benchmarks, OTB2013 [34] includes 51 fully-labeled
short sequences and evaluates the performance of the previ-
ous 29 top trackers. Subsequently, OTB2015 [1] expands the
benchmark to 100 videos to provide unbiased performance
comparisons. The VOT [4], [35], [36], [37], [38], [39], [40] has
been an annual visual object tracking challenge since 2013,
which provides a diverse and adequately small dataset
from existing visual tracking datasets. TC-128 [41] collects
and annotates 78 new videos based on OTB2013 [34] to pro-
vide the evaluation of color-enhanced tracking algorithms
on color sequences. Several datasets are designed for track-
ing specific instances. The NUS-PRO [42] dataset focuses on
tracking pedestrian and rigid objects, and the UAV123 [43]
comprises 123 short videos for assessing unmanned aerial
vehicle tracking performance. Nfs [44] provides 100 sequen-
ces with a higher frame rate (240 FPS) camera, intending to
examine the trade-off bandwidth limitations related to real-
time analysis of visual trackers. With the advancement of
deep learning, a large-scale and high-quality dataset for
short-term tracking is demanded. GOT-10k [5] is a signifi-
cant high-diversity benchmark and comprises 10,000 videos
from the semantic hierarchy of WordNet [45] to accommo-
date plentiful object categories and motion trajectories. It is
the first benchmark to suggest the one-shot protocol for
evaluating tracking performance and improving model
generalization.

Long-Term Tracking Benchmarks. Allowing brief disap-
pearance and having a longer duration are two characteris-
tics of long-term tracking. OxUvA [46] is the first large-scale
dataset for this task and selects 366 videos with an average
duration of 144 seconds, but only performs annotation
every 30 frames. LaSOT [3] is first released in 2019 and pro-
vides a dataset with 3.5M manually labeled frames, includ-
ing 1400 videos with 70 categories. In 2020, LaSOT is
expanded to 1550 videos and 85 classes. It is re-divided
with the one-shot protocol of GOT-10k [5] to improve the
generalization.

Consequently, SOT can continuously locate objects of
any category due to model-free characteristics and is more
versatile for open-set test environments. However, the exist-
ing SOT methods are still far from robust long-term tracking
in complex environments for three reasons:(1) Strong con-
straints in the task definition. The implicit continuous
motion assumption limits the task environment in continu-
ous-time and single-scene, far from the natural application
environment. (2) Limited video type in the existing bench-
marks. Videos with a single shot and a single scene cannot
fully reflect the complexity of the actual situations. (3)
Strong timing-dependence in the modeling process, which
accumulates errors and cannot achieve robust tracking in
long-term tracking.

3 CONSTRUCTION OF VIDEOCUBE

As a high-quality benchmark, VideoCube contains a large-
scale dataset, reasonable evaluation metrics, and scientific
evaluation systems to provide a general platform for intelli-
gence measurement (Fig. 6).

3.1 Dataset

VideoCube is a reliable global instance tracking benchmark
that contains scenes and instances adequately to reflect the

Fig. 6. Construction principles of the VideoCube benchmark. We
assume that a scientific benchmark should characterize the specified
task and evaluate the model intelligence. Dataset, evaluation system,
and performance measurement are three critical points included in con-
structing a benchmark. The red dotted line expresses the relationship of
various fields.
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diversity of real life. Before constructing it, we first summa-
rize the key elements (e.g., benchmark, task, and target) and
propose our design principles based on Fig. 6. Several
aspects are considered in constructing this dataset:

(1) Multiple Collection Dimension. The collection of Video-
Cube is based on six dimensions (Fig. 7) to describe the spa-
tio-temporal relationship and causal relationship of film
narrative, which provides an extensive dataset for the novel
GIT task. We guarantee that each video contains at least
4008 frames, and the average frame length in VideoCube is
around 14920. Besides, the selected videos contain transi-
tions and target disappearance-reappearance process to cancel
the motion continuity assumption.

(2) Specific Annotation Principle and Exhaustive Checkout
Flow. A professional labeling team manually marked each
video with a 10Hz annotation frequency, and all videos
have passed three rounds of review by trained verifiers.
Based on rigorous experiments, we selected the most effec-
tive algorithm PrDiMP [48] to combine manual annotations
and accomplish intensive labels with 30Hz frequency.

(3) Comprehensive Attribute Selection. Multiple shots and
frequent scene-switching make the video content change
dramatically and become more challenging for algorithms.
Thus, we accommodate twelve attributes annotations for
each frame to implement a more elaborate reference for the
performance analysis.

3.1.1 Collection Dimension

The collection dimension is an essential basis for construct-
ing datasets. Rich dimensions can restore the narrative con-
tent and simulate real application scenarios through
dimensions integration. However, most existing video data-
sets only consider instance category and video duration
when constructing but lack an overall narration expression.
As the scale of datasets has increased in recent years, several
datasets have begun to extend their collection dimensions.
For example, GOT-10k [5] combines the motion modes, and
LaSOT [3] adds a natural language description to character-
ize the video content. Nevertheless, we consider that the
existing datasets lack awidespreadmeditation on dimension
selection. The organization of instance categories andmotion

modes such as GOT-10k [5] is suitable for short-term rather
than long-term tasks. The natural language description used
by LaSOT [3] seems to express the video content intuitively,
but this annotation is subjective since personal views will
inevitably be involved. Besides, an extra algorithm is needed
to extract useful information in sentences, which increases
the complexity of usage and errors.

How to determine the collection dimensions? The film
narrative is defined as a chain of causal relationship events
occurring in space and time [51]. The causal relationship is
determined by characters and activities, while the spatio-
temporal relationship combines scene, time, and their conti-
nuity. Consequently, we connect scene category, spatial
continuity, temporal continuity, total frame, motion mode,
and object class as 6D principle (Fig. 7) to collect videos in
VideoCube. The detailed introduction of 6D principle is
organized as follows:

Object Classes. Different from the existing datasets, Video-
Cube collects 89 typical instances and divides them into
nine main categories based on the semantic framework
WordNet [45]. As shown in Fig. 9a, it maintains an even dis-
tribution across the main categories. Since person is the most
common instance category while people with different iden-
tities have significant differences in motion modes and
appearances, we split the person class into performer, ath-
lete, and other careers. Besides, given that computer-gener-
ated instances are common in some application scenarios
but ignored by other datasets, we also add the functional
character.

As shown in Figs. 10a and 10b, VideoCube has advan-
tages in the distribution of object classes, and the nine root
categories maintain uniform distribution. Although LaSOT
[3] maintains an even distribution on 70 classes, half of the
data belong to the animal category, while only 20 sequences
(1.43%) belong to the person.

Spatial Continuity and Scene Categories. Videos in Video-
Cube are divided into normal space and fictional space. First
of all, 56 videos (to keep the same video amount with the fic-
tional character in Fig. 9a) are reserved as the fictional space.
Since VideoCube cancels the motion continuity assumption,
the instance may occur in multiple scenes, causing scene-
switching in a video. Therefore, we divide the normal space

Fig. 7. The 6D principle of data collection. We split the film’s narrative into the spatio-temporal and causal relationship and further decompose them
into six dimensions (scene category, spatial continuity, temporal continuity, total frame, motion mode, object class) to provide a more comprehensive
description.
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videos into 222 continuous spaces and 222 intermittent
spaces, then record the single scene of continuous space and
two main scenes of intermittent space. Finally, all the 666
scenes are evenly divided into seven main categories, as
shown in Fig. 9b.

Figs. 10c and 10d exhibits the distribution of scene cate-
gories in VideoCube and LaSOT [3]. Since the object class of
LaSOT [3] is mainly animals, its scene categories are primar-
ily concentrated in outdoor scenes.

Temporal Continuity and Video Duration. From a temporal
perspective, VideoCube divides 500 videos into time-contin-
uous and time-intermittent. Canceling the continuous
motion hypothesis breaks the temporal boundaries and
extends the proportional timeline to a flexible one. For exam-
ple, a 3-minute video of the SOT task can only record a 3-
minute event. In contrast, a 3-minute video can be edited to
reflect a story for more than an hour in the GIT task, increas-
ing the richness of video content. As shown in Fig. 9c, video
duration in VideoCube can be equally divided into four cate-
gories ranging from 3 minutes to 20 minutes, which is much
higher than the existing video-based datasets.

Motion Modes. VideoCube records the two principal
motion modes for each video. The 1000 motion modes are
divided into 61 categories, as shown in Fig. 9d.

Figs. 10e and 10f shows the distribution of motion modes
in VideoCube and LaSOT [3]. Obviously, the total number
of motion modes in VideoCube (61) is much larger than
LaSOT (33). Besides, the statistical results of LaSOT are
mainly concentrated in the most common modes, while the
statistical results of VideoCube are distributed in a variety
range. The long tail of distribution results in VideoCube
indicates our work includes more rare movements.

We believe that the 6D principle provides a scientific
guide for the data collection, which increases the richness of

video content and helps users quickly restore the narration
from the six elements, improving the practicality of Video-
Cube. Fig. 8 illustrates the representative frames of this
dataset.

3.1.2 Annotation Principle

We use manual labeling and automatic algorithm for data
annotation. The professional annotation team manually
labels every three frames at a frequency of 10 Hz. After that,
the PrDiMP [48] algorithm automatically provides labels for
the rest two frames between manually labeled frames, as
shown in Fig. 13.

Manual Annotation. A professional project team rigor-
ously labels VideoCube. The annotation process observes
the following rules: (1) if the specific instance appears in the
frame, the visible part of the instance is marked with the
tightest bounding box; (2) if the instance is not in the frame,
an absent label is marked. Besides the two main rules above,
some exceptions require individual labeling rules. We sum-
marize the exceptional cases of high-frequency occurrences.
The examples are provided in Fig. 11a: (1) Tiny area: if the
instance is divided into multiple areas by obstacles and
labeling the tiny area will contain many obstacle pixels, the
tiny part is discarded, and only labels the central area
(Figs. 11a, 11b and 11c). (2) Transparent objects: transparent
beards of cats or mice are not marked (Figs. 11b and 11d).
(3) Slender and broad swinging objects: the tail of a mouse or a
long ribbon of a person are not marked (Figs. 11d and 11e).

VideoCube also provides the instance absent label, the
occlusion label, and the starting points of all shots. The tran-
sition is divided into two types: fast transition and slow tran-
sition. Transitions that occurred in two successive frames
without motion continuity are considered as fast transition,

Fig. 8. The representative data of VideoCube. Each video is strictly selected based on duration, instance classes, main scene categories, main
motion modes, spatial consistency, and time consistency.
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and the start frame of each new shot is labeled as a shot-cut.
Dissolve, fade-in, and fade-out between two scenes are slow
transition, and all frames belonging to the interim stage are
labeled. Examples of transitions are shown in Fig. 12.

Automatic Annotation. The execution steps and comple-
tion strategies of the automatic annotation algorithm are
shown in Fig. 13. The red dashed box represents a manually
annotated frame, while the green dashed box represents an
automatically completed frame. For the first row, the anno-
tation team labels #606 and #609, and records the target
position. Since the shot-switching occurs from #608 to #609,
an extra transition tag is needed for #609 to indicate the
beginning of a new shot. The second row explicates the pro-
cess of labeling #643 via PrDiMP [48]. The target position of
two nearest frames with manual annotation is marked as gt-
past (#642) and gt-next (#645). In this sequence, PrDiMP [48]
runs twice with forward order (from #642 to #645) and back-
ward order (from #645 to #642) and records target location
as positive and negative. We design several strategies to syn-
thesize the position parameters of positive, negative, gt-
past, and gt-next for different situations, then obtain the
coordinate of instance in #643. Algorithm 1 presents the
framework for generating the automatic labels.

To verify the effect of the above strategy, we select LaSOT
[3] as the experiment dataset. It is a large-scale, long-term
tracking dataset with a 30 Hz manual label frequency (pro-
vide the manual label for each frame). The first version is
released in 2019with 1400 videos (total of 3.5M frames), while
the new version in 2020 is expanded to 1550 videos (total of
3.87M frames). In this experiment, we select the first version
to verify the performance of the automatic label method.
Fig. 14 presents the experimental result of the automatic anno-
tation on LaSOT. The blue line in Fig. 14a represents 1 Hz
manual annotation frequency with the automatically gener-
ated result for the middle 29 frames; the orange line repre-
sents 10 Hz manual annotation frequency with the

automatically generated result for the two middle frames.
The average IoU score based on the 1 Hz complementation
plan is 0.9, while the average IoU score based on the 10 Hz is
0.95. Fig. 14b shows the IoU value of all 1400 videos based on
10 Hz manual annotation frequency with the automatically
generated result for the two middle frames. It indicates that
the 1 Hz manual labeling frequency is too sparse to provide a
factual basis of the automatic completion scheme (such as
TrackingNet) or evaluation (such asOxUvA). The 10Hzman-
ual labeling frequency with a suitable automatic annotation
mechanism can improve efficiency and provide a human-
level annotation via an effective algorithm.

3.1.3 Checkout Flow

We implement a strict data review process to ensure the
quality of the benchmark. The construction process is
divided into two tasks: data collection and data annotation.
Professional collectors and annotators are trained to com-
prehend the GIT task’s characteristics and complete the pre-
liminary work with a self-inspection process. The verifiers
review the submitted data as the second-round verification.
Finally, the authors judge whether to accept or reject it in
the third-round confirmation. As shown in Fig. 15, any
rejection in self-check, verification, or data acceptance will
result in the re-collection. We believe the three-round verifi-
cation mechanism can generate a high-quality dataset.

3.1.4 Attribute Selection

Twelve attributes are selected in VideoCube to enable fur-
ther performance analysis:

Instance Absent (IA), the instance is out-of-view or fully
occluded by other objects, manually labeled by annotators.

Shot-cut (SC), frame belongs to slow transition or fast
transition, as the starting point for a new shot and is manu-
ally labeled by annotators.

Fig. 9. Data distribution of VideoCube. (a) The distribution of object classes. (b) The distribution of scene categories. (c) The distribution of video
duration. (d) The distribution of motion modes.
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Instance Occlusion (IO), more than 10% of the instance is
occluded, manually labeled by annotators.

Illumination Variation (IV), illumination changes between
previous and current frames. We use the Shade of Gray

algorithm [52] of color constancy to calculate the correction
matrix Ci between the current illumination and the standard
illumination. Multiplying the original frame Fi and the cor-
rectionmatrixCi can obtain the frame Si under standard illu-
mination. The gamma correction factor is 2.2 and the power
is 6 in the correction matrix calculation. Subsequently, the
cosine similarity between the vectors Ci and Oi ¼ ½1; 1; 1� is
calculated as the illumination standard ii of the current
frame: ii ¼ Ci�Oi

kCik�kOik . ii is a quantization value of Illumination

Estimation (IE), and ii < 0:99 means special illumination in
current frame.The difference in absolute value between pre-
vious frame ii�1 and current frame ii is Dii, Dii > 0:0001
means illumination variation in continuous frames.

Blur Variation (BV), quantization of the sharpness varia-
tion between previous and current frames. The variation of
the Laplacian [53] is selected to calculate the blur degree.
We first convert the current image Fi into a grayscale image
Gi, then convolve Gi with a specific Laplacian kernel L, and
calculate the variance of the response result vi — this value
is used as an index of sharpness. Images with vi < 100 can
be considered blurry; otherwise are clear. Besides, the dif-
ference in absolute value between vi�1 and vi is Dvi, while
Dvi > 1:5means blur variation.

Scale Variation (SV), indicator for measuring changes in
instance scales. The size of instance in current frame is si ¼ffiffiffiffiffiffiffiffiffi
wihi

p
, and si =2 ½50; 750� will be considered as Special Scale

(SS). Dsi is calculated by the difference of absolute value
between si�1 and si, and Dsi > 30 signifies scale variation.

Ratio Variation (RV), indicator for characterizing the tar-
get deformation and rotation. The aspect ratio of instance in
current frame is ri ¼ hi

wi
, and ri =2 ½13 ; 3� will be considered as

Fig. 11. Examples of specific rules in VideoCube annotations. (a) Exam-
ple of a tiny area. (b)Garfield’s transparent beard and a tiny part of the
left side. (c)Federer’s right hand. (d)The mouse’s transparent beard and
a slender tail. (e)The white long ribbon.

Fig. 12. Examples of transitions in VideoCube annotations. (The first and
second rows belong to the slow transition, while every two frames of the
third row is a fast transition)

Fig. 10. The distribution of object classes (a-b), scene categories (c-d)
and motion modes (e-f) in VideoCube and LaSOT [3] (based on WordNet
[45]).

Fig. 13. Examples of automatic annotation.
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Special Ratio (SR). Same as the previous calculation process,
Dri > 0:2 stands for ratio variation.

Algorithm 1: Framework of Generate the Automatic
Annotation

Input: Pgt: previous mannually labeled bounding-box; Ngt:
next mannually labeled bounding-box;Bpos: bounding-
box generated in forward order; Bneg: bounding-box
generated in backward order

Output: B: bounding-box of present frame
1 calculate D1 ¼ DIoUðPgt;NgtÞ
2 calculate D2 ¼ DIoUðBpos; BnegÞ

/* Situation 1: a high value of D1 indicates min-

iature movement, and the location can be

directly calculated */

3 ifD1 � t1 then
4 B ¼ averageðPgt; NgtÞ return B
5 calculate E1 ¼ EncloseðPgt;NgtÞ

/* Situation 2: a high value ofD2 indicates nor-

mal movement, and this is the most common situa-

tion. We assume that the motion range of instance

in intermediate frame does not exceedE1 * /

6 ifD2 � t2 then
7 if both Bpos and Bneg are enclosed by E1 then
8 B ¼ averageðBpos; BnegÞ
9 else if Bpos or Bneg is enclosed by E1 then
10 B ¼ Bpos or B ¼ Bneg

11 else if both Bpos and Bneg are outside E1 then
12 B ¼ averageðPgt; NgtÞ
13 return B

/* Situation 3: the situation does not belong to

the above two conditions indicates rapid move-

ment or shot-switching */

14 if presnet frame is the last two frame in a shot then
15 B ¼ averageðBpos; PgtÞ
16 else if presnet frame is the first two frame in a shot then
17 B ¼ averageðBneg;NgtÞ
18 else
19 calculate D3 ¼ DIoUðPgt; BposÞ
20 calculate D4 ¼ DIoUðNgt; BnegÞ
21 ifD3 � D4 then
22 B ¼ IntersectionðE1; BposÞ
23 else
24 B ¼ IntersectionðE1; BnegÞ
25 return B

Fast Motion (FM), an index di ¼ ci�ci�1k k2ffiffiffiffiffiffiffiffiffiffi
sisi�1

p aims to measure

the instance motion speed. The motion of object in current
frame is di, where the ci indicates the center of bounding
box. Since di has reflected the dynamic relationship between
Fi and Fi�1, it can be used to reflect the motion variation
between two frames directly. di > 0:2 will be treated as fast
motion.

Correlation Coefficient (CC), a metric used to measure the
similarity between Fi and Fi�1. In this paper, we use the
Pearson product-moment correlation coefficient(PPMCC)
pi ¼ ri;i�1 ¼ covðFi;Fi�1Þ

sFisFi�1
. The numerator calculates the covari-

ance of the current frame Fi and the previous frame Fi�1,
and the denominator is the product of the standard devia-
tion. The correlation coefficient reflects the changes between
consecutive frames and has been normalized; it can be used
as an attribute index directly. pi > 0:8 signifies the correla-
tion between the continuous two frames is strong.

Twelve attributes can be divided into three types: filter-
ing attributes, self attributes, and dynamic attributes.
Instance absent (IA) and shot-cut (SC) are filtering attributes
to remove frames that are unsuitable for metrics calculation
in experiments. Instance occlusion (IO), illumination esti-
mation (IE), special scale (SS), and special ratio (SR) are self
attributes that only reflect the characteristics of the current
frame rather than embody the dynamic variations. Blur var-
iation (BV), illumination variation (IV), scale variation (SV),
ratio variation (RV), fast motion (FM), and coefficient of cor-
relation (CC) are dynamic attributes that contain the
dynamic relationship between consecutive frames.

3.2 Evaluation System

The following two sections introduce the evaluation system
and performance measurement of the GIT task. The evalua-
tion system aims to judge the model’s capabilities (such as
accuracy and robustness) through a reasonable evaluation
method. The performance measurement focuses on quanti-
tatively mapping the model capabilities through scientific
calculation to accomplish more in-depth analysis and sort
the results via numerical values.

3.2.1 One-Pass Evaluation (OPE)

The evaluation protocol of OTB [1] benchmark has six cate-
gories: three normal processes, including one-pass evalua-
tion (OPE), temporal robustness evaluation (TRE), spatial
robustness evaluation (SRE), and three restart processes
involving one-pass evaluation with restart (OPER), temporal
robustness evaluation with restart (TRER), spatial robust-
ness evaluation with restart (SRER). Among them, the OPE

Fig. 14. The experimental result of the automatic annotation on LaSOT.

Fig. 15. The framework of data checkout process.
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method is defined as using the ground-truth in the first
frame to initialize the model and continuously locate the tar-
get in subsequent frames. Subsequent tracking-based visual
tasks (i.e., short-term and long-term tracking) are only distin-
guished in assignment settings but maintain the OPE
method as the evaluation system.

Numerous benchmarks listed in Table 1 except two
short-term tracking benchmarks (OTB and VOT) only retain
the OPE mode but discard the restart mechanism. However,
the restart proposed by OTB does not perform real-time
supervision but generates the OPER results based on a
series of existing experimental results generated by the TRE
method. Although VOT can complete a fail-detection in the
algorithm running process, the re-initialization is performed
directly without any design for selecting the restart frame.

3.2.2 One-Pass Evaluation With Restart Mechanism

(R-OPE)

The restart mechanism is essential in evaluating the GIT task
for the following reasons: (1) Videos in VideoCube have a
longer average frame and includemultiple challenging char-
acteristics like shot-switching and scene-transferring. Thus,
models are prone to fail in locating instances and cannot be
reinitialized. (2) The count of restarts can be quantified as an
indicator to measure the algorithm’s robustness. A similar
restart mechanism has been studied on monkeys by neuro-
scientists [54], [55]. They replace the target P with interfer-
ence N during the rapid eye movements of monkeys. After
several repetitions, the observation of activities in the tempo-
ral cortex of monkeys indicates that the monkey has con-
fused P and N . Some online update algorithms continue
learning the apparent characteristics of the instance during
the tracking process. However, challenges like lens-switch-
ing mean the algorithm needs to expand the search range to
relocate the instance (like rapid eye movement). Re-location
may misidentify the interference as an instance and update

the wrong sample. This situation is caused by the wrong
instance updating rather than weak learning ability. There-
fore, VideoCube includes two evaluation systems: tradi-
tional OPE andOPEwith restart mechanism (R-OPE).

The foundation of the R-OPE mechanism is selecting
restart frames. The selection process follows two principles:
(1) The restart frame is manually annotated rather than
automatically generated to ensure the label quality. (2) Rich
instance features are contained in the restart frame to pro-
vide enough information for re-initialization. We select the
YOLACT++ [56] algorithm to segment each manually
labeled bounding box, delete the background, match the
remaining instance with the clear-cut query in the first
frame, and finally determine frames with matching points
exceeding a certain threshold as restart frames. According
to statistics, 17.2% of frames in VideoCube satisfy the filter
conditions.

Example of R-OPE mechanism is shown in Fig. 16. The
first row illustrates the traditional OPE mechanism. The
tracker is initialized in the first frame, in which the algo-
rithm result (blue) and ground-truth (red) coincide. In the
following tracking process, the IoU value of the algorithm
result (blue) and ground-truth (red) is less than a threshold
(usually 0.5) in the #130, which indicates a failure. Since the
OPE mechanism does not detect failure, the continued fail-
ure causes subsequent frames to be wasted. The second row

TABLE 1
Comparison of VideoCube With Popular Single Object Tracking Benchmarks

VideoCube is superior to existing datasets in multiple dimensions, including scale, label density, and content richness (object classes, motion modes, scene catego-
ries). Note: (a) TrackingNet performs manual annotation per second and uses the DCF [47] algorithm to automatically label the remaining frames to accomplish
dense labeling with 30Hz frequency. (b) GOT-10k extracts 1.45 million images from more than 40h videos at 10FPS and manually annotates each frame. (c) The
object classes in GOT-10k are finely divided based on WordNet [45]. For example, the border collie is an independent category, rather than being divided into
dogs. (d) OxUvA believes that the manual labeling frequency of 1 Hz is sufficient for trackers, thus only offering annotation once per second. (e) OxUvA only per-
forms additional annotation about target absence but ignores other challenging attributes. (f) VideoCube combines manual and automatic annotation similar to
TrackingNet but increases the manual label frequency to 10Hz due to frequent scene switching in videos, and uses PrDiMP [48] to complete 30Hz dense annota-
tion. (g) VideoCube uses WordNet as the semantic framework to divide the video objects into 9 categories and 89 sub-categories. (h) Given WordNet’s limited
ability to classify unique scenes, VideoCube uses WordNet as the backbone and references FrameNet [49] and ConceptNet [50] to divide scenes into 8 categories
and 55 sub-categories.

Fig. 16. Comparison of the two evaluation mechanisms. The first row
illustrates traditional OPE mechanism, and the second row illustrates R-
OPE mechanism with failure detection and tracker restart.
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is the R-OPE mechanism with failure detection and tracker
restart. The green frame indicates an appropriate restart
point. After the tracking failure is detected at #130, the algo-
rithm will be re-initialized at the nearest restart point
(#132), and subsequent sequences will continue to partici-
pate in the evaluation. When the tracking failure occurs in
#281, the algorithm will be restarted at #282.

3.3 Evaluation Metrics

Similar to the metrics used by most SOT benchmarks [1], [3],
[5], [46], we first utilize the precision plot and the success
plot to measure the performance of the algorithms for OPE
and R-OPE mechanisms.

3.3.1 Precision Plot

Tradition precision (PRE) measures the center distance
between the predicted result pt and the ground-truth bt in
pixels. Calculating the proportion of frames whose distance
is less than the specified threshold and drawing the statisti-
cal results based on different thresholds into a curve gener-
ates the precision plot. Typically, trackers are ranked on 20
pixels [1], [3]. However, the object scale is influenced by tar-
get size and image resolution but ignored by the original
PRE score. Thus, two new benchmarks [2], [3] adopt the
ground-truth scale (width and height) to normalize the cen-
ter distance. Specifically, the height difference and width
difference between two center points are divided by the
ground-truth shape before calculating the distance. This
operation solves the target scale influence on PRE calcula-
tion but is still not comprehensive enough.

Fig. 17a presents a counterexample. The green rectangle
represents the ground-truth, where point O denotes the cen-
ter point. Assume that five yellow rectangular boxes show
the prediction results of the five algorithms. To eliminate
the influence of other factors, here assumes the prediction

results have only position differences. OA, OB, OC, and OD
are the same, while OE is slightly larger. The precision
scores of tracker A, B, C, D based on two existing metrics
(directly using the center point distance or only using the
current ground-truth size for normalization) are the same,
while tracker E is worse. Nevertheless, from Fig. 17a, we
can directly judge that A and E perform better than B. The
calculation results are contrary to common sense because
the target aspect ratio affects accuracy but is ignored by
existing metrics. For non-square bounding boxes, only the
center point distance cannot quantify the tracking accuracy
accurately.

To deal with the above problem, we propose a new pre-
cision metric N-PRE. Explicitly, we select the center dis-
tance as the original precision if the tracker center point
falls into the ground-truth rectangle. Algorithms with a
predicted center outside the ground-truth rectangle will
also calculate the shortest distance between its center and
the ground-truth edge. As shown in Fig. 17b, the original
precision value of tracker E is OE, while other trackers are
calculated by two parts (center distance represented by the
green dashed line, and the penalty item represented by the
yellow dashed line). Subsequently, we quantify the origi-
nal precision value to the [0, 1] interval; 0 represents the
tracker center point is O, while 1 represents the score of
the farthest point in the current frame (upper right point).
In Fig. 17a, the performance of tracker A evaluated via N-
PRE is the best while tracker B is the worst. It is consistent
with reality.

3.3.2 Success Plot

To get the success rate (SR), we first calculate the Intersec-
tion over Union (IoU) of the predicted result pt and the
ground-truth bt. Frames with an overlap rate greater than a
specified threshold are defined as successful tracking, and
the SR measures the percentage of successfully tracked
frames under different overlap thresholds. The statistical
results based on different thresholds create the success plot.
Besides, we implement two more success scores based on
Generalized IoU (GIoU [57]) and Distance IoU (DIoU [58]),
aiming to provide a comprehensive scientific evaluation.

3.3.3 Robustness

For the R-OPEmechanism,wepropose a new evaluation indi-
cator to evaluate robustness. Specifically, we define robust-
ness asR ¼ 1

N

PN
i¼1½Sð 1riÞð1�

Ii
Ri
Þ�.N represents the number of

videos participating in the evaluation, ri indicates the correla-
tion coefficient of the ith video, Ri means the total number of
restart frames selected for this video, and Ii denotes the num-
ber of restarts of the tracker.

4 EXPERIMENTS

We accomplish extensive experiments in this section and
divide them into two parts:

Standard Experiments. We select 20 algorithms (Ocean [59],
SiamRCNN [60], SuperDiMP [48], LTMU [61], PrDiMP [48],
SiamCAR [62], SiamFC++ [63], SiamDW [64], GlobalTrack
[65], DiMP [66], SPLT [67], SiamRPN++ [68], ATOM [69],
DaSiamRPN [70], SiamRPN [30], ECO [27], SiamFC [28],

Fig. 17. The counterexample of traditional precision metrics and the
computation process of the normalized precision (N-PRE). (a) Insuffi-
ciency of existing precision indicators. Common sense infers that algo-
rithm A has the highest accuracy while B performs worst. However, the
traditional precision (TRE) indicator results consider A, B, C,D have the
same precision and are better than E. (b) The computation process of
the normalized precision (N-PRE). The ground-truth bounding box
divides the screen into nine areas (I to IX). Point E falls into area V
(ground-truth); the distance between E and the O point is considered
the original precision value of tracker E. For other trackers that fall into
eight external areas, the original precision value is the sum of two parts.
The first part is the distance between the center point and O (shown as
the green dashed line); the second part is the penalty item calculated by
the shortest distance between the center point and the edge of the
ground-truth box (shown as the yellow dashed line). To exclude the influ-
ence of instance size and frame resolution, we select the maximum
value of all screen points to normalize the result.
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TLD [71], CSRT [72], KCF [23]) as baselines and conduct
experiments under the OPE and R-OPE mechanisms. All
algorithms are fully evaluated under two mechanisms to
generate the precision plot and success plot.

Eye Tracking Experiments. We apply an eye tracker
machine to record and quantify the human visual tracking
ability. The intelligence level of trackers can be measured by
comparing human capacity with algorithm tracking results.

Fig. 18. Standard experiments in OPE mechanism, evaluated by precision (PRE) plot, N-PRE plot, and success plot. The red, blue, and green in the
tables represent the first, second, and third placed algorithms of each indicator.

Fig. 19. Standard experiments in R-OPE mechanism, evaluated by precision (PRE) plot, N-PRE plot, and success plot. The red, blue, and green in
the tables represent the first, second, and third placed algorithms of each indicator.
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4.1 Standard Experiments

Twenty trackers are selected as baseline models and evalu-
ated on VideoCube. Given that most algorithms do not
determine the instance absent, we first remove the frames

that exclude the tracked instance. Besides, frames in the
transition stage may include superimposed instances. To
ensure the accuracy of the evaluation, we remove the transi-
tion frames as well.

Fig. 20. The attribute performance. (a) to (c) illustrates the performance of the three worst attributes in classical OPE mechanism by different evalua-
tion metrics. (d) to (f) illustrates the performance of the three worst attributes in R-OPE mechanism by different evaluation metrics.
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4.1.1 Overall Performance

Figs. 18 and 19 present the overall performance of trackers
in OPE and R-OPE mechanisms. The scores and rankings of
algorithms under these two mechanisms are pretty distinct,
confirming that the two evaluation mechanisms’ focuses are
different. For evaluation results in OPE (Fig. 18), the algo-
rithm scores are low since the VideoCube allows lens
switching and scene transferring, causing the jump change
of the target position in consecutive frames. Most algo-
rithms strongly depend on continuous motion assumption
and usually use local search to locate the target, thus per-
forming worse when the position variation occurs. The R-
OPE mechanism restarts algorithms at the next restart point
after detecting the failure (Fig. 19). Its precision plot and
success plot focus on evaluating the local-search ability,
while the robustness score obtained via quantifying the
number of restarts reflects the global-search ability.

4.1.2 Attribute Performance

VideoCube selects twelve attributes to describe the chal-
lenges in the GIT task and divides them into three categories:
filtering attributes, self attributes, and dynamic attributes.
We provide twelve attribute labels for each frame to fully
capture the difficulty factors. The detailed results are demon-
strated in Fig. 20. It is clear that compared with other attrib-
utes, fast motion (FM), ratio variation (RV), special ratio (SR),
and scale variation (SV) challenge the performance of trackers.

4.2 Eye Tracking Experiments

Unlike traditional visual tracking experiments that only
evaluate algorithms with performance rather than intelli-
gence, we design an eye-tracking experiment to judge
human visual tracking ability and measure machine intelli-
gence via comparison.

Ten videos with different difficulty, duration, instance
types, space classes, motion modes are played to the subject
at three speeds (15FPS, 20FPS, and 30FPS). We select 15
human subjects to track the test video at three rates. We
have obtained the approvals of all the human participants.
Every participant has signed an informed consent form
before the experiment. First, each subject should calibrate
the eye tracker machine to ensure that the instrument can
accurately detect the sightline. Second, the test video
appears in the screen center, and the subject should focus

on the target in the first frame, then press the play button.
After that, the subject needs to concentrate on the target and
maintain tracking accuracy. The subject has a rest time to
relieve visual fatigue between two videos. The eye tracker
machine records the eye movement of subjects, and the
focus of sight is used to calculate the precision score and
generate precision plots.

Fig. 22 illustrates the detailed process of eye-tracking
experiments, which consists of three steps. (1) The subject cal-
ibrates the eye tracker machine (Tobii Eye Tracker) to ensure
that the instrument can accurately detect the sightline. (2) A
TEST video appears in the screen center. The subject should
focus on the target in the first frame, press the play button,
and concentrate on maintaining tracking accuracy. TEST
video aims to help subjects familiarize themselves with the
test process. (3) The subject begins the formal experiment by
tracking six different videos. A break between two videos is
needed to ensure the effectiveness of the experiment.

Fig. 21 presents the precision plots of humans and 20
trackers in OPE mechanisms.Turing_15, Turing_20, and
Turing_30 represent human scores at 15FPS, 20FPS, and
30FPS, respectively. We can draw the following conclusions
through comparison: (1) The calculation methods and
sequencing principles of traditional precision (PRE) scores
have multiple problems. PRE measures the center distance
between the predicted result and the ground-truth in pixels,
but ignores the impact of target size and video resolution
(for detailed analysis, please refer to the methods chapter).
This makes the ranking threshold with 20 pixels unreason-
able. In the precision plot of Fig. 21, human performance is
far lower than algorithms, contrary to our common sense.
Since the deviation of the eye tracker machine may exceed
20 pixels in several situations, 20 pixels are too strict by

Fig. 22. The process of eye-tracking experiment. Ten videos (A-J) with
different difficulty, duration, instance types, space classes, motion
modes are played to the subject at three speeds (15FPS, 20FPS, and
30FPS). Fifteen subjects track the test videos at three rates.

Fig. 21. Eye-tracking experiments in OPE mechanism, evaluated by precision (PRE) plot and N-PRE plot. The red, blue, and green in the tables rep-
resent the first, second, and third placed algorithms of each indicator.
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comparing with the image resolution and target size of vid-
eos in VideoCube. (2) The normalized precision plot shows
that the human visual tracking ability is worse than tracking
algorithms for strict precision requirements. The reason
may be the deviation of the eye tracker machine and the
human attention (for person target, subjects prone to focus
on the head instead of the torso). When the accuracy
requirements are moderately reduced, the human visual
ability will quickly exceed algorithms and remain stable.

Besides, Fig. 23 explains how the human eye outperforms
the SOTAalgorithms. Humans can quickly locate the target in
challenging factors such as transitions, similar objects, occlu-
sion, and complex illumination occur, while the algorithms
always fail or drift to similar instances. The experiment
presents that algorithms need to enhance the robustness in
challenging environments to achieve human-like tracking.
Fig. 24 presents cases where human eyes and algorithms fail,
indicating that some extreme environments challenge both
humans and algorithms to accomplish target tracking.

5 CONCLUSION

To help trackers locate the target more like humans, we ana-
lyze the fundamentals of measuring the intelligence level
and summarize the limitations of existing benchmarks. In this
paper, we (1) propose the GIT task to explicitly model the
human visual tracking ability, (2) build the VideoCube bench-
mark to create a challenging experimental environment close
to the real world, and (3) finally design a scientific evaluation
procedure to measure the tracking performance of humans
andmachines. The experimental results show that there is still
a definite gap between trackers and humans. Still, we believe
the general online platform treats human tracking capabilities
as a baseline to evaluate themachine intelligence level, guiding
the research to accomplish human-like trackers in the future.
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