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Instance search aims at retrieving a particular object instance from a set of scene images. Although stud-
ied in previous competitions like TRECVID, there have been limited literature or datasets on this topic. In
this paper, to overcome the generalization issue when arbitrary categories are involved in search and to
benefit from the large amount of unlabeled data, we propose a cycle self-training framework which trains
the instance search pipeline with automatic supervision. Given the two-stage pipeline with a localization
and ranking module, the cycle self-training includes a ranker-guided localizer, and a localizer-guided ran-
ker, each carefully designed to handle noisy labels that come with self-supervision. Furthermore, we
build and release large-scale groundtruth annotations for instances to facilitate the algorithm evaluation
and analysis in this research topic, especially for small objects in complex background. The datasets are
publicly available at https://github.com/instance-search/instance-search. Extensive experiments show
the effectiveness of the proposed cycle self-training framework and the superior performance compared
with other state-of-the-art methods.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction tracking handles tiny objects of arbitrary classes. However, the
Is it possible to search the same instance in scene images from
multiple cameras? Imagine trying to identify the owner of an unat-
tended suitcase in an airport for security reasons, by looking
through all surveillance cameras and tracking it, or searching for
the accomplices of a suspect by identifying those who helped
transfer a briefcase. Unlike person re-identification which mainly
focuses on retrieving a particular person, the object of interest here
could be the suitcase, the briefcase, or any arbitrary object.
Instance search is just designed for these cases.

For clarification, we define instance search as to locate and
retrieve object instances of arbitrary category from whole scene
images (Fig. 1 (a)). The topic is related to many vision tasks, e.g.,
person re-identification (ReID), person search, content based image
retrieval (CBIR), and single object tracking (SOT) as compared in
Fig. 2. Person ReID uses pre-detected person images for retrieval,
and the category is limited to the person category. Person search
steps further than person ReID because the query person should
search from whole scene images. Image retrieval often focuses on
salient objects in limited categories, e.g., buildings. Single object
search is executed only in a local region by the spatial–temporal
constraint. Single object tracking searches through one video while
instance search operates through all candidate scene images. More
discussions among these tasks are listed in Section 2.

Instance search is very challenging for the following reasons:
(1) Precise localization and ranking: The same instance captured
in different cameras might appear in various locations, scales,
viewpoints, with various deformations, and occlusions in complex
background. (2) No labeled training data: There is often no train-
ing data for the task. Generalization should be guaranteed for
objects of any category. There is room for current studies in both
methods and data usage.

The first instance search dataset TRECVID [1] aims to search and
locate instances from movies. However, the public availability and
data scale are limited, which slows down the academic research. In
recent years, instance search mainly focuses on salient objects,
which makes the problem simpler. However, these methods with
classic features [2–4] or deep features [5–7] fail to localize non-
salient objects. Motivated by the Siamese networks [8], recent
works [9,10] also employ query-guided Siamese networks for pre-
cise localization. However, Siamese networks lack discrimination
capability and fail to reject distractor instances with similar
appearances [11].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.06.027&domain=pdf
https://github.com/instance-search/instance-search
https://doi.org/10.1016/j.neucom.2022.06.027
https://doi.org/10.1016/j.neucom.2022.06.027
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. (a) Illustration of the instance search task. The instance search problem setting is closer to real-world applications and more challenging. (b) Pipeline of instance search
system. Two modules are included: 1) The localizer to locate candidate bounding boxes in an initial ranking list. 2) The class-agnostic ranker to further refine the results.

Fig. 2. Comparison among person re-identification, person search, image retrieval, single object tracking, and instance search.
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Therefore, to simultaneously enhance the localization and dis-
crimination ability, we present our method of instance search sys-
tem as a two-stage pipeline. It includes a query-guided localizer for
precise localization and a class-agnostic ranker for robust feature
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representation, as shown in Fig. 1 (b). Another reason for the
two-stage framework is that each stage could be optimized inde-
pendently with a specially designed strategy. For a query object-
of-interest, a localizer locates candidate bounding boxes within
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all the gallery scene images. These candidate boxes are further
refined by a ranking stage, which represents each box as a feature
vector and sorts the results based on their feature similarities to
the query object. The pipeline has been evaluated extensively
against different localization/ranking algorithms and proved an
effective framework on several datasets.

Following the tradition in the instance search community, the
dataset usually does not include a training set. The lack of training
data urges us to design algorithms with better generalization and
adaptation ability. Self-training has become popular in recent years
for its capability of training without human annotations. However,
self-training for each of the two modules separately [12–14] looks
impractical in our setting because we only have full scene images
without any detected or cropped objects. Therefore, a cycle self-
training framework is proposed, with a ranker-guided localizer
and a localizer-guided ranker. Given candidate bounding boxes
generated by a localizer, their feature similarities could be refined
by the ranker. The refined similarities can provide supervision on
training the Siamese-based localizer. Similarly, self-training for
the ranker is possible if the localizer helps generate the bounding
boxes of objects. As the two stages can benefit each other during
training, the self-training of two modules is performed iteratively,
named Cycle Self Training (CST).

To our best knowledge, existing instance search datasets either
focus on salient objects with limited variations [1,15] or only cover
a limited range of object categories [16]. To facilitate the algorithm
evaluation in a more challenging scenario, we choose a few popular
public datasets and add additional cross-camera instance-level
annotations of arbitrary objects to their original images. In partic-
ular, we annotate 535 object instances across 6,079 scene images
in PRW dataset (named INS-PRW) and 6,972 object instances
across 9,648 scene images in CUHK-SYSU dataset (named INS-
CUHK-SYSU). Sample annotations can be found in Fig. 5.

Our contributions are summarized as follows:

� A cycle self-training method is proposed to learn the instance
searcher from pure scene images without any labeled training
data. The cycle consists of a ranker-guided localizer and a
localizer-guided ranker. The two modules feed into each other
to improve performance through the iterations, as shown in
the experiments.

� A new benchmark is built for instance search. We build and
release instance-level annotations of several popular datasets
for the research community at https://github.com/instance-
search/instance-search. Several baselines and comprehensive
experiments have been conducted on these datasets. The pro-
posed self-training method outperforms other supervised
methods and implies its great potential usage.

2. Related work

2.1. Instance search

Instance search was first introduced as a task in TRECVID. It
aims to search for instances of the specific query object, person,
or place entity. However, the public availability and data scale
are limited. Instance-160 [16] and Instance-335 [15] step further
with larger data scale. However, the search region is limited in
the single video as the two datasets reuse annotations from single
object tracking. Instance search develops from early methods for
salient objects to current methods for precise localization. Mohe-
dano et al. [5] produced an assignment map for each local array
of activations in a convolutional layer to a visual word. The assign-
ment map was used for fast spatial re-ranking and object localiza-
tion. Salvador et al. [17] extracted image and region-wise
representations pooled from Faster R-CNN. The instance search
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pipeline is composed of a filtering stage followed by a spatial re-
ranking. Zhan et al. [16] used instance-aware semantic segmenta-
tion (FCIS) [18] for instance search. Zhang et al. [10] proposed
multi-task integration of joint detection and retrieval. The end-
to-end framework was improved based on classic Siamese net-
works by a novel online pairing (OLP) loss and a hard example pri-
ority (HEP). Recently, Hong et al. [19] proposed a self-paced
learning framework to achieve accurate object localization on the
rank list returned by instance search. Some works propose
weakly-supervised learning for the lack of labeled data. Guan
et al. [20] proposed a novel tag-based weakly-supervised deep
hashing framework. Zhao et al. [21,22] proposed a weakly-
supervised Deep Multiple Instance Hashing (DMIH) framework
for object-based image retrieval and search. The above methods
either suffer from precise localization or lack discrimination with
only Siamese networks. We are different from these methods as
we combine query-guided localizer and ReID network to guarantee
precise searching results. More importantly, we do not rely on
annotated training data and only learn instance search models
from unlabeled data.

2.2. Person search

Person search aims to localize the same query person from a
gallery of whole scene images. Ever since the publication of two
large-scale datasets, CUHK-SYSU [23] and PRW [24], many meth-
ods have been proposed. On the one hand, the popular two-step
framework [24] separates the task into person detection and per-
son ReID, which would benefit from the state-of-the-art algorithms
in both research communities. Apart from general person detec-
tors, query-guided detectors have also been used for more accurate
proposals. Dong et al. [25] proposed a new detection network
named Instance Guided Proposal Network (IGPN) to produce
query-related proposals. On the other hand, there are also one-
stage frameworks. Liu et al. [26] proposed Conv-LSTM based Neu-
ral Person Search Machines (NPSM). Chang et al. [27] regard the
search process as a conditional decision-making process. Chen
et al. [28] proposed Norm-Aware Embedding to disentangle the
person embedding into norm and angle for detection and ReID
tasks, respectively. Although well studied, the topic only focuses
on the person category and relies heavily on person detector and
person embedding. The generalization to unseen arbitrary cate-
gories could not be preserved.

2.3. Other related topics

We introduce some other topics which may confuse with
instance search. The comparison among these datasets can be
found in Fig. 2.

2.3.1. Person ReID
Person ReID is the task of associating images of the same person

from detected human images. Since person detection is conducted
by manual annotation or algorithms, the task does not focus on
whole scene images. Current studies focus on global [29,30] or
local [31–33] feature learning, loss functions [34,35,30], bag-of-
tricks [36,37] and reranking methods [38]. Although well studied,
the topic limits the category. Also, the additional person detector
is necessary for whole scene images.

2.3.2. Image retrieval
Content Based Image Retrieval (CBIR), a well-studied topic for

several years, retrieves images from a large gallery based on their
semantic similarities to the query image. The widely used
instance-level CBIR datasets include Oxford [39], Paris [40] and
Google Landmarks [41], etc.. Compact global representations could

https://github.com/instance-search/instance-search
https://github.com/instance-search/instance-search
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be learned from various loss functions [42–44]. Apart from global
features, deep-learning-based local descriptors [41,45] have been
widely used. Recent methods often combine both global and local
features [45,46], with global features to generate the initial rank
list and local features to refine the results by further geometric
verification.

2.3.3. Single object tracking
Given the initial bounding box provided in the first frame, single

object tracking aims to locate the instance in the following frames
of the same video. Single object tracking methods also consider
arbitrary categories. However, there is a strong assumption that
objects should be searched in a local spatial–temporal window
rather than the whole image. Huang et al. [47] proposed Global-
Track which performs searching on the full image without online
learning. The method imposes no constraints on the temporal con-
sistency of the target’s location or scale to avoid cumulative errors.
However, the model alone is indeed a localizer and lacks discrim-
ination capability.

3. Methods

3.1. Brief description

We first introduce the two-stage framework with a localizer
and a ranker for instance search in 3.2. We propose self-training
for the two modules to learn from unlabeled data arbitrary class
in 3.3. The self-training of the two modules can be performed iter-
atively to achieve better overall performance.

3.2. Two-stage framework

We introduce our two-stage framework with a query-guided
localizer [47] and a class-agnostic ranker [48] as shown in Fig. 1.
For a given query Q of arbitrary category, the localizer first pro-
duces several candidate boxes from all scene images as
C ¼ fðp1; d1Þ; ðp2; d2Þ; . . . ðpN; dNÞg, where pi stands for a candidate
and di for localization score. The localizer alone cannot guarantee
discrimination. A ranker is then introduced to extract feature
embeddings of the candidates and then use cosine similarities to
refine the results. The final ranklist could be written as
l ¼ fðp1; s1Þ; ðp2; s2Þ; . . . ðpN; sNÞg, where si stands for the refined sim-
ilarity score. With the combination of the two modules, the frame-
work could achieve both precise localization and ranking.

3.2.1. Localizer
It is natural to use Siamese networks for localization tasks. As

the query object might appear anywhere in the whole image with
any scale, we choose an algorithm like GlobalTrack [47], which
does not have any constraints on scale or search range.

GlobalTrack modifies an ordinary two-stage object detector
Faster-RCNN by introducing the correlation operation from the
query feature map. It converts original RPN and RCNN modules
into Query-Guided RPN (QG-RPN) and Query-Guided RCNN (QG-
RCNN). We suggest readers GlobalTrack original paper [47] for
details.

QG-RPN performs operations as below to generate a feature
map x̂:

x̂ ¼ gqgrpn
ðq; xÞ ¼ f out f xðxÞ � f qðqÞ

� � ð1Þ

where q 2 Rk�k�c and x 2 Rk�k�c denote query ROI feature and gal-
lery feature respectively, k for ROI feature height and width, c for
ROI feature channel number. f x; f q are projection functions for the
gallery and query image, � stands for the convolution operator,
f out generates output features x̂ and ensures that it retains the size
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of x. The obtained feature map x̂ can be used in the traditional
Region Proposal Network(RPN) module during both training and
testing. Next, QG-RCNN is used to generate final bounding boxes.
After correlating query information, the detection loss function is
just the same as Faster-RCNN with the following formula:

Ldet ¼ Lcls þ kLreg ð2Þ
Lreg ¼
X

i2fx;y;w;hg
smoothL1 ti � v ið Þ ð3Þ
smoothL1 ðxÞ ¼
0:5x2 if jxj < 1
jxj � 0:5 otherwise

(
ð4Þ

where Lcls stands for the classification loss and Lreg for the bounding
box regression loss. k is the parameter to control the two losses. v i is
the ground truth bounding-box regression offset and ti is the pre-
dicted offset. We emphasize that the correlation between query
and gallery is essential for the localizer, and other Siamese net-
works without temporal constraints could also be used.
3.2.2. Ranker
The class-agnostic ranker extracts feature embedding for any

candidate objects, and cosine similarities are then computed. The
setting is different from custom person re-identification or face
recognition because of the unlimited category. The network can
be trained with loss functions like

Lreid ¼ Lcls þ aLtrp ð5Þ
Lcls ¼
XN
i¼1

� qi log pið Þ qi ¼ 0; y– i

qi ¼ 1; y ¼ i

�
ð6Þ
Ltrp ¼ dp � dn þ a
� �

þ ð7Þ

where Lcls and Ltrp stand for softmax cross-entropy loss and triplet
loss [35], with a balancing their weights. For classification loss, y
is truth ID label and pi as ID prediction logits of class i. For triplet
loss, dp and dn are feature distances of positive pair and negative
pair. a is the margin of triplet loss, and ½z�+ equals to max(z, 0).
For each input object image, features output from the network
can be treated as embeddings, and they are ranked based on their
cosine similarities to the query feature.
3.3. Cycle self-training

Instance search suffers from the well-known ‘‘domain gap” due
to different lighting conditions, camera resolutions, backgrounds,
demographic, etc.. In addition, the algorithmmight also suffer from
the bias on instance variations presented in training data. As we
aim for arbitrary categories of objects, training data may have
insufficient sampling over the enormous space, not to mention that
annotating data at the instance level is expensive. These challenges
hinder the applications of instance search in the real world, so it is
desirable to leverage the large amount of unlabeled data to narrow
down or eliminate the domain gap with self-training.

As the proposed algorithm architecture includes two modules,
our designed self-training framework includes a ranker-guided
localizer and a localizer-guided ranker. Most importantly, a cycle
self-training framework is designed to improve the two modules
iteratively and achieve better overall performance.

An overview of the proposed cycle self-training framework is
shown in Fig. 3, and the algorithm details are summarized in Algo-
rithm 1. The framework can be divided into three parts:



Fig. 3. Illustration of Cycle Self-Training (CST) for instance search. 1) The blue box is the ranklist generation process, and the ranklist is used for localizer and ranker training.
2) The orange box is the self-training process of the localizer. The ranklist lt of t-th iteration is used to update localizer from Lt to Ltþ1, and Ltþ1 is used for t þ 1-th iteration to
generate the new ranklist ltþ1. 3) The green box is the self-training process of ranker. The ranklist lt of t-th iteration is used to update ranker from Rt to Rtþ1, and Rtþ1 is used for
t þ 1-th iteration to generate the new ranklist ltþ1.
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� Ranklist generation: At the t-th iteration of the loop, the local-
izer Lt + ranker Rt together produce a ranklist lt . This stage is
similar to Section 3.2 as no backward propagation is involved.

� Ranker-guided Localizer: lt is then used for self-training of Lt
using the algorithm in Section 3.3.1, producing a better version
of localizer Ltþ1.

� Localizer-guided Ranker: The same ranklist lt is used to perform
self-training of Rtþ1 using algorithm in Section 3.3.2.

Throughout the cyclic style of training, neither the localizer nor
the ranker is perfect. However, the designed self-training module
can handle noisy pseudo labels robustly, leading to an overall gain
and steadily improving pipeline.

Algorithm1: Cycle Self Training (CST)

Input: query set Q , initial localizer L0, initial ranker R0, total
iterations T

for t ¼ 0 to T � 1 do
Generate ranklist lt by localizer Lt + ranker Rt .
Localizer self-training for a refined localizer Ltþ1 from
ranklist lt .
Ranker self-training for a refined ranker Rtþ1 from ranklist lt .

end for
3.3.1. Ranker-guided Localizer
The self-training of the localizer is depicted in the orange part in

Fig. 3. As localizer training needs pairs of images with the same
instance ID, the ranker is employed to generate pseudo pair-wise
labels.

It is natural to select those highly-ranked predictions to make
pseudo pairs as they are more similar to the query. Hard threshold
on similarity score or top-K with a fixed K would make the algo-
rithm brittle. Instead, we propose a Similarity-guided Sampling
(SGS) strategy. For the ranklist l, we normalize the similarity scores
over the whole rank list into a probability format as:

probi ¼
siXN

i¼1

si

ð8Þ

so that probi stands for sampling probability for the i-th sample. The
pseudo pair-wise labels are sampled according to this normalized
probability probi, so that the samples ranked at the top will con-
tribute more in constructing pseudo pairs and have a larger impact
in the localizer training. This strategy can be regarded as a distilla-
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tion process to transfer knowledge of better similarity scores from
the ranker.

3.3.2. Localizer-guided Ranker
SimCLR [49] is a strong framework for image classification self-

training and is chosen as our initial setup. A mini-batch of N sam-
ples is randomly selected, where each sample is augmented twice
to serve as the positive sample and thus results in 2 N data points.
For each positive pair denoted as i and j, its contribution to the loss
function is written as below:

‘i;j ¼ � log
exp sim zi; zj

� �
=s

� �
X2N

k¼1;k–i

exp sim zi; zkð Þ=sð Þ
ð9Þ

where simðu;vÞ denotes the feature similarity between u;v , and s
denotes a temperature parameter.

Compared to the settings of traditional self-supervised learning
on image classification or representation learning, there are several
additional challenges of performing self-training on images coming
from the localization module: (1) distractor images due to imper-
fect localization, e.g., an object divided into multiple parts. (2)
missing data due to imperfect localization, i.e., some object images
might not be located.

To handle the data noise and redundancy, we first perform the
DBSCAN clustering algorithm as shown in the green part in Fig. 3.
Different from the original SimCLR, each sample is assigned a
pseudo ID label based on the clustering results, and positive pairs
are sampled within each cluster ID. By introducing the additional
clustering step, the redundancy in data samples is overcome. It also
avoids getting negative pairs for training which actually belong to
the same instance.

We propose Multi-Source-Cluster SimCLR (MSC-SimCLR) with
both visual and spatial constraints. The pairwise similarity Si;j for
clustering is evaluated as the sum of visual feature similarity Vi;j

and IoU score IoUi;j as Si;j ¼ Vi;j þ IoUi;j, where i; j stands for pair-
wise samples. IoU score is introduced because samples generated
by the localizer may come from the same scene image, and their
overlapping positions can help improve the similarity estimation,
especially when the feature similarity is still not well trained yet.

3.3.3. Query seed
An initial set of query objects is required to start the iterative

self-training process. To do so, we employ various methods to gen-
erate queries automatically. A general object detection COCO-
trained YOLOv4 model detects objects in common categories, e.g.,
cats, dogs. Region proposal algorithms like selective search and



Fig. 4. Annotation pipeline by reusing person search annotations. Row (a) represents person search annotations, Row (b) represents visual similarities by models, and Row (c)
represents Refined similarities from IOU.
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edge box are also used to find ‘‘objectness” boxes, e.g., a book on
the desk or traffic signal on the road. We keep each data source
with the same ratio to cover all possible objects.

4. The proposed INS dataset

There are several criteria for a dataset to be suitable for our des-
ignated purpose: (1) The raw data should come from a multi-
camera setup, i.e., there should be sufficient objects appearing in
multiple cameras; (2) The raw scene images need to be available
so that the background distractor objects could be taken into
account instead of focusing only on cropped images of people;
(3) The objects should have varied sizes in complex background.
To benefit from the existing well-known datasets, PRW [24] and
CUHK-SYSU [23] are chosen based on the criteria mentioned above.
In addition to their original annotations for person search, we pro-
vide further annotations to facilitate instance search based on their
raw data.

4.1. Annotation description

We ask a group of well-trained human annotators for data
annotation. The annotators are experienced and professional in
annotating objects under different cameras. Researchers also
double-check the annotations after the annotation. We first manu-
ally draw bounding boxes for candidate objects of interest. After
the objects are obtained from each scene image, we associate them
based on the appearance cues and their relationship with person ID
groundtruth provided by PRW and CUHK-SYSU. As shown in Fig. 4,
if the candidate boxes have overlap with person boxes of the same
ID, their similarities will be greatly increased because they may
correspond to the same object instance. The final similarity
between a pair of objects is represented as
scoreij ¼ simij þmaxk1ðiouik � ioujkÞ, where simij stands for the
visual similarity between objects i; j and iouik stands for intersec-
tion over union between i and an annotated person k; 1ðxÞ is an
indicator function taking value of 1 only when x > 0. After the
association, any bounding boxes which do not find any matching
instance across cameras would be discarded.

Fig. 5 presents samples from the annotation. We summarize
some important features as follows:
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� Different scenes in Fig. 5a, 5b. The annotated objects cover
both indoor and outdoor scenes which makes the annotation
closer to real applications.

� Tiny objects in Fig. 5c. Some annotations are very small which
requires precise localization.

� Different instances in the same scene image in Fig. 5d. Differ-
ent from single object tracking, our annotation allows multiple
different instances in the same scene image.

� Category variates. We cover a large number of category vari-
ates including backpacks, skirts, albums, books, traffic lights,
and so on.

� Different viewpoints, deformations, and occlusions in Fig. 5e,
5f. We emphasize that these objects can still be clarified by
human annotators. No distractors with similar appearances
are included and thus the problem is not ill-conditioned.

4.2. Dataset statistics

In total, 535 object instances are annotated in PRW, covering
6,079 scene images, which is denoted as INS-PRW. 6,972 object
instances are annotated in CUHK-SYSU, covering 9,648 scene
images, which is denoted as INS-CUHK-SYSU. Table 1 compares
these two new datasets with several previous related datasets in
various aspects. Compared to the existing instance search datasets,
our data covers a much larger number of instances. These make the
evaluation more challenging and urge us to develop a more robust
algorithm.

We define the normalized area as Areapatch=Areawhole where
Areapatch and Areawhole represent the pixel-level area of the patch
and the whole scene image. Fig. 6 shows the distribution of nor-
malized area and aspect ratio (width=height) of the annotated
boxes on PRW. For our annotated objects, the boxes occupy a much
smaller area in the full image than the person boxes. The aspect
ratio distribution of the new annotated objects is more spread
out than those of person boxes, meaning that our objects are of
wider variations. Fig. 7 further lists the category distribution of
the datasets by assigning them into the 20 categories of Pascal
VOC (by human annotators). Over 90% of the objects are excluded
from VOC classes. These unseen objects can be roughly categorized
into backpacks, luggage, furniture, logos, and umbrellas. Since the
person category has been well studied in person search, we do



Fig. 5. Sample images of the annotated instances. Target instances vary in different scenes, scales, categories and may or may not be appendages. These instances have
different perspectives and appear in different scenes.
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not include this category in our annotation. A significant portion of
the objects does not belong to person accessories (not carried by a
person), which means person detection/ReIDmethods cannot solve
the problem. Overall, the provided annotations make the task more
challenging compared to the original person search task and the
existing instance search datasets.
276
5. Experiments

We first demonstrate the effectiveness of the proposed cycle
self-training pipeline (Section 6.1), then we report ablation studies
where we vary the algorithmic setting of cycle self-training
(Section 6.2), and finally, we evaluate the generalization capability
on other categories.



Table 1
Comparison among instance search datasets and relevant datasets.

Task Dataset # images # IDs # boxes # queries category camera switch tiny public

person ReID Market-1501 [50] 32,668 1,501 32,668 3,368 person U - U

Duke [51] 36,441 1,404 36,441 2,228 person U - U

person search CUHK-SYSU [23] 18,184 8,432 23,435 2,900 person � U U

PRW [24] 11,816 932 34,304 2,057 person U U U

CBIR Oxford [39] 5,062 11 - 55 building U � U

Paris [40] 6,412 11 - 55 building U � U

INSTRE [52] 28,543 250 28,543 1250 arbitrary � U U

DeepFashion2 [53] 491k 43.8k 801k 24,402 clothes � � U

SOT GOT-10k [54] 1.5M 10,000 1.5M 10,000 563 classes � U U

LaSOT [55] 3.87M 1,550 3.87M 1,550 85 classes � U U

INS TRECVID-INS [1] 23,614 50 23,614 50 arbitrary � � �
Instance-160 [16] 11,885 160 11,885 160 COCO 80 � U �
Instance-335 [15] 40,914 335 40,914 335 arbitrary � � U

INS-CUHK-SYSU 9,648 6,972 16,780 6,972 arbitrary � U U

INS-PRW 6,079 535 7,834 1,537 arbitrary U U U

Fig. 6. Statistics of the annotated datasets compared with the original data. Area ratios in (a) indicate smaller annotations than person search. Aspect ratios in (b) shows a
wider range than person search.

Fig. 7. Category statistics of the INS-CUHK-SYSU. There is only a small portion of
VOC predefined categories.
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5.1. Datasets

We first propose a two-stage pipeline for INS in the subsequent
subsections by collecting objects of varied categories, including
GOT-10 k [54], YouTube BB [56] and VID 2015 [57]. These datasets
are defined as Dsup and the model is defined as ‘pretrained‘ in this
paper. Multiple bounding box annotations of the same instance
under different views should be provided for supervised learning,
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which limits the dataset scale. Inspired by the recent progress in
self supervised learning, we introduce more datasets including
multiple object tracking [58,59], general object detection [60], per-
son detection [61], vehicle tracking [62] and person search [24,23]
datasets. We name this more general dataset as Dself in our paper.

To evaluate the instance search accuracy for non-salient objects
in different views, we use the annotated datasets INS-CUHK-SYSU
and INS-PRW as the test set. The overall test set settings are listed
as follows:

5.1.1. INS datasets
We choose Instance-160 [16], Instance-335 [15] and our anno-

tated datasets. Other widely used CBIR datasets focus on salient
objects and are thus not suitable for our task.

5.1.2. Person search datasets
Two widely used person search datasets CUHK-SYSU [23] and

PRW [24] are used to evaluate the generalization of the self-
training methods.

5.2. Evaluation protocols

Given a query image with a bounding box, an instance search
algorithm should produce multiple prediction boxes (with rank-
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ing) on the gallery images. A prediction is regarded as true positive
only if it has enough overlap (iou > 0:5) with the ground truth
bounding box which has the same ID as the query. Rank-1 accuracy
and mAP of the rank list are used to evaluate the instance search
algorithm. Following the original gallery setting in CUHK-SYSU
and PRW, we randomly select 100 local gallery images for a query
in INS-CUHK-SYSU and search through the whole gallery set in
INS-PRW. No context information near the query bounding box
should be allowed because the instance may appear at any
location.
5.3. Implementation details

For the localizer, Resnet50_FPN is used as the backbone. The
channel number for the backbone feature and ROI feature c is
256. ROI features are extracted by ROI align [63] with the output
size as k ¼ 7. The size of each input image is normalized so that
its longer edge is no larger than 1,333 pixels and shorter edge no
larger than 800 pixels. The regression weight k in Equ. 2 is set to
1.0. We use SGD with a momentum of 0.9 and weight decay of
0.0001. The initial learning rate is 0.001, and it decays with a factor
of 0.1 at epoch 8. We train for a total of 12 epochs with a batch size
of 4 pairs.

For the ranker, Resnet50 is used as the backbone. We use global
average pooling on the last layer of Resnet50 backbone and get a
feature of 2,048. We then add a fully connected layer with the
dimension of 512 to involve compact features. Then the bottleneck
is connected to fully connected layers with the class number. The
parameter a in Equ. 5 is set as 1.0. We use SGD with a momentum
of 0.9 and weight decay of 0.0005. The initial learning rate is 0.001,
and it decays by a cosine annealing strategy with 30 epochs. The
input image size is 224� 224, and the batch size is 64 per GPU.
6. Baseline experiments

As tasks of instance search do not include a training or fine-
tuning step, it is crucial to choose the appropriate pre-trained
model which is robust enough to be generalized to the instance
search datasets. For the localization module, we take the open-
sourced pre-trained model coming from GlobalTrack. Bag-of-
Tricks [48] model is employed for the pre-training of the ranker.

We demonstrate the performance of several choices of localiza-
tion methods and ranking networks in Table 2. The localization
methods being tested include: (1) Edge box [64]; (2) YOLO v4
[65] General detection pretrained on COCO 80 classes; (3) SiamRPN
[8] (4) GlobalTrack [47]. Two choices of the rankers are listed as
well: (1) Bag-of-Tricks model pre-trained on person ReID Duke
[51] dataset, denoted as ‘‘Ped-ReID”; (2) Bag-of-Tricks model as
described in Sec. 3.2, denoted as ‘‘Any-ReID”.

In addition, the localizer itself can be used to generate a ranked
list, which can be treated as the instance search result without an
extra ranker. The standalone localizer is the typical setup of a one-
stage search framework and is listed for comparison as well in
Table 2. Generally speaking, the localizer alone as a one-stage
framework achieves a lower performance compared with its two-
stage counterpart. By extracting feature vectors in a more dedi-
cated way, the list from localization can be further re-ranked,
and the overall accuracy is greatly improved.

In terms of the module selection in a two-stage framework, the
general object detection performs poorly since the pre-defined 80
classes in COCO could not cover test cases. The series of Siamese
networks perform better. However, SiamRPN fails to handle
objects with large scale variations or significant location differ-
ences. On the other hand, GlobalTrack performs well and is a better
choice for the localization module. For the choice of rankers, it is
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obvious that class-specific feature extraction is inappropriate,
and a class-agnostic module is preferable.

Therefore, the following experiments on instance search will be
conducted based on the best setting consisting of GlobalTrack and
Any-ReID.
6.1. Instance search

6.1.1. Comparison on current INS datasets
We compare our pretrained models and self-trained methods

on current instance search datasets. As shown in Table 3, our meth-
ods achieve state-of-the-art performance. Previous methods use
general object detection or classification models while we use deep
features strongly related to the query object. The self-training with
more data further improves the performance.
6.1.2. Comparison on proposed INS datasets
Table 4 lists results comparison on the annotated datasets. As

previous methods are proposed for simple background with salient
objects, their performance can hardly be evaluated on the pro-
posed dataset. State-of-the-art image retrieval method DELG [45]
fails to produce precise localization. Siamese networks lack dis-
crimination, and the performance is not satisfying. The proposed
two-stage pretrained models together with self-training achieve
satisfying performance.

Fig. 8 compares Precision-Recall curve on the proposed INS
datasets. Our models achieve the highest recall of about 50% on
INS-CUHK-SYSU while about 15% on INS-PRW. The lower recall
than person search implies the difficulties of instance search. After
self-training, the models improve in both precision and recall.
6.2. Ablation study

6.2.1. Number of query seeds
As the principle of cycle self-training is to leverage the large

amount of unlabeled data, Table 5 demonstrates the performance
of cycle self-training with different numbers of initial query seeds.
More query seeds provide more variations of objects, thus making
the model more robust after training. 1,000 query seeds produce
moderate performance, while 30,000 query seeds achieve the best
performance. Query seeds seem more critical for INS-CUHK-SYSU
as the objects are larger and are more likely to be covered by initial
query seeds. We use 30,000 query seeds in our experiments unless
specified otherwise.
6.2.2. Self-training of localizer
If each query object is treated as a category on its own, the

returned list of the same instance across multiple cameras can be
regarded as a group of object detection results, which can be eval-
uated by Recall@k [24] and average precision. Note that these met-
rics only judge the localization capability by fixing the groundtruth
gallery image. Since no other distractor gallery scene images are
included, the performance is a lot better than the overall system.

The performance of different localizer self-training methods can
be compared with the same rank list from the ranker. As discussed
in Section 3.3.1, naive pseudo-pair generation methods cut off the
rank list by a fixed length (top-K). From Table 6, it can be observed
that K ¼ 2 would make a low recall of pseudo labels, and K ¼ 20
would make the pseudo labels less accurate. These naive settings
both yield poor performance. Instead, the proposed probabilistic
approach SGS makes a better tradeoff between precision and recall.
The sampling strategy achieves the best performance without the
need for specific parameters to generate pseudo labels robustly.



Table 2
The performance comparison of different choices of localizer and ranker. GlobalTrack + Any-ReID is the best setting.

Setting INS-CUHK-SYSU INS-PRW

Localizer ranker rank-1 mAP rank-1 mAP

Edge box - 0.01 0.09 0.0 0.0
General Det. - 0.03 0.2 0.0 0.01
SiamRPN - 16.0 14.2 0.0 0.0

GlobalTrack - 28.4 27.8 0.2 0.2
Edge box Ped-ReID 7.9 7.0 1.6 0.4

General Det. Ped-ReID 27.4 27.3 5.4 1.7
SiamRPN Ped-ReID 8.0 5.3 1.0 0.1

GlobalTrack Ped-ReID 35.0 32.8 5.0 2.8
Edge box Any-ReID 9.5 8.3 2.5 0.5

General Det. Any-ReID 38.4 37.4 5.7 1.6
SiamRPN Any-ReID 23.0 19.6 3.2 0.5

GlobalTrack Any-ReID 43.1 42.1 18.7 8.5

Table 3
Performance comparison on current instance search datasets. The pretrained two-
stage framework and self-training outperform other methods.

Method Instance-160 Instance-335

R-MAC [66] 35.8 37.5
CroW [67] 33.8 32.1
CAM [7] 35.8 34.7
BLCF [6] 65.3 48.3

BLCF-SalGAN [6] 65.6 46.9
CIS + XD [16] 72.4 59.3
DASR [15] 77.1 72.4
pretrained 79.6 75.3

self-training 83.9 79.2
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6.2.3. Self-training of ranker
If all labeled instances are cropped into patches, they could be

treated as a gallery set with multiple IDs. Thus retrieving cropped
Table 4
Performance comparison on annotated instance search datasets. The pretrained two-stage

Method INS-CUHK-SYSU

rank-1

DELG [45] 2.0
SiamRPN [8] 16.0

GlobalTrack [47] 28.4
pretrained 43.1

self-training 49.4

Fig. 8. PR curve on the
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gallery images is exactly consistent with a typical ReID task. There-
fore, rank-1 and mAP following the ReID convention can be used to
evaluate the performance of class-agnostic rankers. Since localiza-
tion is provided by groundtruth, the performance is a lot better
than the overall system.

When fixing the localizer, the ranker can be self-trained follow-
ing the algorithm described in Section 3.3.2. Table 7 lists the com-
parison between clustering-based methods [12–14] and our
proposed solution. On the one hand, clustering-based self-
training is very effective, but it is sensitive to the choice of Ks; on
the other hand, the proposed MSC-SimCLR is not sensitive to noisy
data with a large value of K and achieves the best performance.
6.2.4. Number of iterations of cycle self-training
Table 8 lists the results achieved by cycle self-training on INS-

PRW without any supervised training. As can be seen, both the
framework and self-training outperform other methods.

INS-PRW

mAP rank-1 mAP

1.2 0.0 0.0
14.2 0.0 0.0
27.8 0.2 0.2
42.1 18.7 8.5
47.4 24.2 13.4

proposed datasets.



Table 5
Performance for different number of query seeds for self-training. More query seeds are beneficial for self-training.

Total number Number per image INS-CUHK-SYSU INS-PRW

rank-1 mAP rank-1 mAP

pretrained pretrained 43.1 42.1 18.7 8.5
1000 0.004 45.8 43.9 19.1 8.9
10000 0.04 47.4 45.9 20.2 9.8
30000 0.12 49.4 47.4 24.2 13.4
50000 0.2 49.6 47.5 24.3 13.4

Table 6
The performance of self-training for localization. The proposed SGS outperforms naive sampling.

Setting INS-CUHK-SYSU INS-PRW

Recall@20 mAP Recall@20 mAP

pretrained 91.4 74.7 76.6 45.5
TOPK = 2 91.7 75.6 74.6 43.7
TOPK = 5 91.8 74.5 78.5 46.5
TOPK = 20 90.1 68.3 71.6 30.4

SGS 92.3 76.7 79.3 47.7

Table 7
The performance of ranker self-training. The proposed MSC-SimCLR outperforms naive thresholding.

Setting INS-CUHK-SYSU INS-PRW

rank-1 mAP rank-1 mAP

pretrained 68.5 71.5 37.4 24.0
TOPK = 2 69.9 72.6 40.2 27.7
TOPK = 5 70.3 73.0 39.9 28.2
TOPK = 20 69.9 72.8 39.6 27.5

MSC-SimCLR 71.5 74.6 41.2 28.8

Table 8
Performance evolution of cycle self-training for different iterations on INS-PRW. More iterations are beneficial for self-training.

Setting Localization Ranking INS

Recall@20 mAP rank-1 mAP rank-1 mAP

pretrained 76.6 45.5 37.4 24.0 18.7 8.5
round 1 79.3 47.7 41.2 28.8 22.1 11.8
round 2 79.8 47.9 41.5 29.0 22.5 12.2
round 3 80.2 48.3 42.3 29.6 23.8 12.6
round 4 80.5 48.5 42.4 29.7 24.2 13.4

Table 9
Performance comparison on person search. * represents results on combined datasets (person + non-person). The proposed method generalize well to the person category.

Setting Method CUHK-SYSU PRW

rank-1 mAP rank-1 mAP

sup OIM 78.7 75.5 49.9 21.3
sup QEEPS 89.1 88.9 76.7 37.1
sup BINet 92.4 91.5 81.7 45.3
sup NAE+ 92.9 92.1 81.1 44.0
sup DC-I-Net 86.5 86.2 55.1 31.8
sup our baseline 69.8 67.1 68.0 13.4

unsup IUA 40.9 41.2 36.0 21.7
unsup our self-train 79.4 76.6 71.2 26.6
unsup our self-train* 24.4 34.6 20.2 18.4
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Fig. 9. Qualitative evaluation for typical hard challenges. The proposed method outperforms others for different scenes, views, and occlusion due to precise localization and
ranking. Best viewed in color.

Table 10
The performance of person-related and person-independent objects n INS-CUHK-
SYSU.

Setting rank-1 mAP

person-related 56.5 51.3
person-independent 44.1 45.6

overall 49.4 47.4
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localizer and the ranker keep being improved after several rounds
of updates. With the combination of the two modules, the overall
performance improves gradually with the updates.
6.3. Model generalization

We then compare performance on person search, which is a
special case of instance search. Table 9 compares different SOTA
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methods [68,25,28,23] on two popular person search datasets,
PRW and CUHK-SYSU. Our supervised baseline trained on general
objects achieves promising performance. It even beats IUA [69]
which was unsupervised trained on person search datasets. When
self-trained on the much larger dataset Dself , the performance
improves by a large margin compared with the baseline model.
The self-training methods even beat supervised learning methods
OIM [23] trained on person search datasets. Note that the self-
training does not rely on any labels, which indicates its practical
application.

Since the annotated data comes from person search datasets,
we combine the original person data with our INS data. Thus the
combined dataset contains not only the person category but also
non-person categories. Current SOTA person search methods fail
for arbitrary categories while our method still performs well.
Besides, the proposed self-training method has no restriction for
categories. It still performs moderately well on the combined data-
set, which indicates good generalization capability.

6.4. Qualitative evaluation

To qualitatively analyze different methods and provide guid-
ance for future research, we show the qualitative evaluation results
on the proposed instance search datasets in Fig. 9. SiamRPN fails
when the gallery ground truth is far from the query. DELG relies
heavily on the initial global rank list and thus fails for all cases.
General detection and edge box provide candidate proposals with
no discriminative ability and thus fail for all cases. GlobalTrack
searches throughout the whole scene images but fails for some tiny
objects with similar distractors. On the other hand, the proposed
method handles tiny objects successfully because of the discrimi-
native ranker.
7. Discussions

7.1. person independent objects

Since some objects are related to the person, person context
information may help the instance search of the objects. We thus
separate INS-CUHK-SYSU into two subsets by the categories:
person-related objects such as luggage and backpack, which counts
about 30% of total data. The other data could be served as person-
independent objects. Table 10 lists the performance of person-
related and person-independent objects in INS-CUHK-SYSU.
Person-related objects achieve higher accuracy. The reason could
be the informative context clothing of humans. Nevertheless,
person-independent objects achieve relatively high results, which
again proves the effectiveness of the proposed method.
8. Conclusion

We focus on instance search for small objects in complex back-
ground, which is a very challenging problem. A two-stage strong
baseline is introduced to precisely localize the searched objects.
A cycle self-training framework is proposed to keep the generaliza-
tion ability to deal with arbitrary classes, with self-training for a
ranker-guided localizer and a localizer-guided ranker. The two
modules in the pipeline can benefit each other during training
without any human-labeled data. The instance search datasets pro-
vided in this paper are the first to search unconstrained objects in
the wild across multiple cameras. They can be regarded as a valu-
able extension to tasks like face recognition, person ReID or person
search in surveillance scenarios. We believe this framework and
the dataset have the potential of being applied in various smart
city applications.
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