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Abstract
Single object tracking (SOT) research falls into a cycle—trackers perform well on most benchmarks but quickly fail in
challenging scenarios, causing researchers to doubt the insufficient data content and take more effort to construct larger
datasets with more challenging situations. However, inefficient data utilization and limited evaluation methods more seriously
hinder SOT research. The former causes existing datasets can not be exploited comprehensively, while the latter neglects
challenging factors in the evaluation process. In this article, we systematize the representative benchmarks and form a single
object tracking metaverse (SOTVerse)—a user-defined SOT task space to break through the bottleneck. We first propose a
3E Paradigm to describe tasks by three components (i.e., environment, evaluation, and executor). Then, we summarize task
characteristics, clarify the organization standards, and construct SOTVerse with 12.56 million frames. Specifically, SOTVerse
automatically labels challenging factors per frame, allowing users to generate user-defined spaces efficiently via construction
rules. Besides, SOTVerse provides two mechanisms with new indicators and successfully evaluates trackers under various
subtasks. Consequently, SOTVerse first provides a strategy to improve resource utilization in the computer vision area, making
research more standardized. The SOTVerse, toolkit, evaluation server, and results are available at http://metaverse.aitestunion.
com.

Keywords Single object tracking · Experimental environment · Evaluation system · Performance analysis

1 Introduction

As the fundamental computer vision task, single object track-
ing (SOT (Kristan et al., 2013; Wu et al., 2015; Fan et al.,
2021; Huang et al., 2021; Hu et al., 2023), i.e., locates a
user-specified moving target in a video) aims to model the
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powerful human dynamic vision ability (JW, 1962; Bieder-
man, 1987; Lee & Seung, 1999; McLeod et al., 2003; Land
& McLeod, 2000; Beals et al., 1971; Burg, 1966; Kohl et
al., 1991), and has been widely used in daily application sce-
narios like self-driving cars (Kim et al., 2019; Kong & Fu,
2022; Dendorfer et al., 2021), intelligent monitoring (Yoon
et al., 2019; Cook, 2012; Chu et al., 2017), augmented reality
(Zhang & Vela, 2015; Abu Alhaija et al., 2018; Gauglitz et
al., 2011) and robot navigation (Dupeyroux et al., 2019; Held
et al., 2016; Ramakrishnan et al., 2021). When we look back
at the evolution of SOT task, we can find that the task defini-
tion has drifted three times – from short-term tracking (Wu et
al., 2013, 2015) to long-term tracking (Fan et al., 2021; Kris-
tan et al., 2019), and then to spatiotemporal change tracking
(Hu et al., 2023). Obviously, the expansion of task definition
prompts SOT to gradually model the human tracking vision
ability and evolve towards general vision intelligence.

During thehumanoidprocess of taskdefinition, researchers
have also contributed to constructing comprehensive bench-
marks, aiming to provide high-quality datasets and scientific
evaluation methods for algorithms. The first systematic
SOT benchmark OTB (Wu et al., 2013) was successfully
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released in 2013. In the following decade, more and more
benchmarks have been successfully constructed with larger
dataset scales, and richer video content (Fan et al., 2021;
Huang et al., 2021; Hu et al., 2023). At the same time,
several researchers (Čehovin et al., 2016; Kristan et al.,
2016; Lukeźič et al., 2020) also design various evaluation
mechanisms to accomplish performance analysis via dif-
ferent perspectives. These benchmarks provide profitable
environments and standardized evaluation processes, greatly
facilitating the development of data-driven trackers.

Through the above analyses, the ideal research route
should be an upward spiral: a more human-like task defini-
tion promotes a more complicated benchmark construction,
and ultimately guides to more intelligent algorithms. How-
ever, some bad cases show that current research falls into
a cycle – state-of-the-art (SOTA) algorithms perform well
on most benchmarks but quickly fail when facing challeng-
ing factors in real application scenarios, causing researchers
to doubt the insufficiency of benchmarks; thus, researchers
usually spend a lot of effort constructing a larger dataset to
solve this problem (e.g., the scale of SOT benchmarks in
the past decade has been expended nearly 250 times). But
many actual examples, like the frequent self-driving acci-
dents, indicate that only expanding the dataset scale cannot
break this bottleneck.

To find the core reasons for this phenomenon, we first
analyze existing issues separately from the perspective of
datasets and evaluation:

• For the dataset aspect, existing data has not been
exploited effectively. SOT task has evolved different
characteristics during the development process, which is
the primary reason yielding benchmarks to follow mis-
cellaneous data collection rules. This phenomenon leads
to inconsistencies in the construction process, causing
experimental environments to become isolated. Existing
datasets can only be compared in superficial features like
dataset scale but are difficult to contrast in vital compo-
nents such as content difficulty (e.g., challenging factors
are always selected to represent the difficulty, while
various benchmarks annotate challenging attributes by
different metrics, and many classical benchmarks only
provide sequence-level annotations rather than frame-
level). Besides, although the well-known VOT compe-
tition (Kristan et al., 2016) has designed a sequence
sampling algorithm to automatically select representa-
tive sequences from a data pool, the efficiency of this
strategy in massive data space is not high enough. Thus,
when researchers aim to investigate tasks in more com-
plex scenarios, most of them usually reconstruct a larger
dataset rather than extracting relevant data from existing
datasets.

• For the evaluation aspect, limitations of evaluation
methods lead to neglect of challenging factors. Mul-
tiple researchers always overlook the shortcomings of
evaluation methods. In fact, existing benchmarks mainly
run trackers on sequences, get frame-by-frame scores,
and finally calculate the average value to represent the
overall performance. However, SOT is a sequential deci-
sion task and is seriously affected by challenging factors
(e.g., frames with fast motion or tiny objects), while
regular tracking sequences in benchmarks are usually
composed of many simple frames and scant challenging
frames. Thus, bad performance is ignored after averaging
due to the low proportion of challenging frames.

The above problems hinder related research, increase
hardship for resource integration and utilization, and ulti-
mately create bottlenecks in research. In this work, we
systematize the representative benchmarks and construct
a comprehensive single object tracking metaverse named
SOTVerse to solve the issues, as shown in Fig. 1. Like
DeepMind (Team et al., 2021) defines reinforcement learn-
ing tasks as world, game, and co-players, we propose a 3E
Paradigm to describe computer vision tasks by three compo-
nents (i.e., environment, evaluation, and executor). Among
them, datasets provide the environment to portray task char-
acteristics, evaluation methods measure performance from
multiple aspects, and executors can estimate their visual
tracking abilities via SOTVerse.

Specifically, to integrate different environments into SOT-
Verse, we first correspond task characteristics with data
collection rules, clarify the organization standards, and con-
struct themas the normal space. In particular,we also provide
various challenging attribute labels for each frame, allowing
users to extract related sub-sequences from SOTVerse and
efficiently generate challenging spaces with their research
purpose. Besides, to overcome the limitations of traditional
evaluation methods, SOTVerse provides three novel indi-
cators to focus on tracking robustness under challenging
factors.

Obviously, SOTVerse is a customizable and extensible
space. We summarize the contributions as follows:

• A paradigm to describe computer vision tasks. Com-
puter vision tasks can be characterized by environment,
evaluation, and executor. Figure1 illustrates the 3E
paradigm by analyzing SOT in detail: we synthesize the
environment and evaluation to form SOTVerse – a user-
defined single object tracking task space, and conduct
experiments in this space to judge executors’ tracking
ability. Definitely, this paradigm can be expanded to
describe different visual tasks and help users improve
their research efficiency.
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Fig. 1 The 3E Paradigm to describe the SOT task. A computer
vision task can be characterized by three elements (environment,
evaluation, and executor). (TASK) For the SOT task, constraints con-
tained in the definition are gradually eliminated during development.
(ENVIRONMENT) Environment portrays task characteristics.Wefirst
select eight representative datasets to form the SOTVerse and then label
multiple challenging attributes for each frame.Users can quickly extract

related sub-sequences for different tasks, such as selecting abnormal
ratio sub-sequences to create a single deformable object tracking space.
(EVALUATION) SOTVerse provides diverse evaluation mechanisms
and evaluation indicators to measure performance. (EXECUTOR)
Both algorithms and human experimenters can test their visual tracking
capabilities via SOTVerse
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Fig. 2 The user-defined process
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into interaction and expansion.
(INTERACTION) Users need
three steps to finish the
operation: first, select data
extraction rules according to
task characteristics to generate
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• Acomprehensiveanduser-definedenvironment.Through
precise analyses of the task definition, we organize exist-
ing benchmarks to form the environment of SOTVerse.
It includes 12.56 million frames and frame-level chal-
lenging attribute labels to model the real world. Notably,
the thresholds for determining challenging factors are
selected by their distribution on the whole environ-
ment. Besides, an environment generation method can
efficiently help researchers form their own task space.
Therefore, unlike traditional benchmarks’ isolated and
static design, SOTVerse is a comprehensive and dynamic
experimental environment.

• A thoroughgoing evaluation scheme.We first point out
the limitations of existing systems and indicators through
detailed analysis; then design a new evaluation scheme,
which includes two mechanisms and new metrics to sat-
isfy various tasks.

• Various experimental executors and detailed analy-
sis. We conduct extensive experiments in the SOTVerse
and perform performance analysis on various execu-
tors. Experimental results show that challenging factors
severely hamper tracking performance – the proposed

challenging plot reveals that high scores are mainly
obtained in normal frames, while the success rate of most
trackers is less than 0.5 under challenging situations.
Finally, we point out the necessity of the re-initialization
mechanism for evaluation in long sequences. These
results indicate the shortcomings of existing work and
verify the effectiveness of the evaluation scheme in SOT-
Verse.

We provide a comprehensive online platform at http://
metaverse.aitestunion.com to help users operate SOTVerse.
The user-defined process illustrated by Fig. 2 can be divided
into interaction and expansion. With our platform, users
can select the environment generation method according
to task characteristics and directly download the generated
experimental environment. Besides, an open-sourced toolkit
is available to accomplish the evaluation process. Finally,
users can upload the experimental results and obtain the
corresponding performance analysis. In addition, we accom-
modate users to expand SOTVerse. For example, users can
provide new datasets or develop new environment genera-
tion methods to enrich the experimental environment. They
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can also formulate new evaluation mechanisms and quickly
verify the effectiveness of various subtasks.

Evidently, SOTVerse allows users to customize tasks
according to their own research purposes. It not only makes
research more targeted, but also can significantly improve
research efficiency. Furthermore, the 3E Paradigm success-
fully performed in the SOT area provides an excellent
example, which can be referenced by various visual or other
domain tasks in the future.

The rest is organized as follows. Section2 provides a
review of the SOT task. Section3 introduces the design prin-
ciples of SOTVerse. Section4 describes the experimental
results and detailed analysis. Finally, the conclusions and
discussions of future work are summarized in Sect. 5.

2 RelatedWork

2.1 Task

Understanding a task includes (1) task definition analysis
and (2) task description paradigm. The former is an external
description to distinguish a task from others through strict
boundaries. The latter is an internal description representing
a task through environment and execution standards.

2.1.1 Task Definition Analysis

SOT is usually defined as only providing the initial position
of an arbitrary object and continuously locating it in a video
sequence (Wu et al., 2013, 2015). Since 2013, researchers
have proposed several influential benchmarks (Wu et al.,
2015; Muller et al., 2018; Fan et al., 2021; Huang et al.,
2021; Hu et al., 2023) – the organized datasets and unified
metrics promote the SOT research. However, limited by the
research level, early definition adds additional constraints
to simplify the task. The influential VOT competition limits
this task to five keywords: single-target, model-free, causal
trackers, single-camera, and short-term (Kristan et al., 2016).
The first three keywords (single-target, model-free, causal
trackers) correspond to the original definition and are the
criteria for distinguishing SOT from other visual tasks (e.g.,
multi-object tracking (Ciaparrone et al., 2019; Geuther et al.,
2019) andvisual instance detection (Wang et al., 2018;Esteva
et al., 2021; Real et al., 2017; Russakovsky et al., 2015)).
In comparison, the latter two keywords (single-camera and
short-term) are constraints added to simplify research in the
early stage.

The development of SOT is continuously removinghidden
constraints and closer to the essential definition, as shown in
Fig. 3. Since 2018, some researchers have withdrawn short-
term and proposed long-term tracking (Valmadre et al., 2018;
Fan et al., 2021; Kristan et al., 2019). In 2022, researchers

further remove the single-camera constraint and propose the
global instance tracking (GIT) (Hu et al., 2023), which is
supposed to search an arbitrary user-specified instance in
a video without any assumptions about camera or motion
consistency. Clearly, GIT realizes the basic definition of SOT
by gradually removing the constraints.

2.1.2 Task Description Paradigm

The description paradigm analyzes a task from multiple
dimensions, establishes specific operating rules, andprovides
experimental environments for executors. In other words,
the paradigm transforms a monotonous task definition into
several operational elements concretely. In 2021, DeepMind
(Team et al., 2021) provides a task description paradigm for
the reinforcement learning task, consisting of a game with
a world and co-players. The world is composed of various
static and dynamic elements, which can quickly combine an
adapted environment according to the task characteristics. A
series of goals consist of the game, which aims to guide play-
ers tomaximize total reward. Players are agents who perform
tasks in the world according to the game rules.

Although the computer vision area does not propose a
specific task description paradigm like reinforcement learn-
ing, different researchers have tried to characterize the task
from three aspects: environment, evaluation, and executor.
Correspondingly, relevant datasets provide the execution
environment of the task; evaluation methods are similar to
the game rules, which measure the performance via different
metrics; executors are the task entertainer, including related
algorithms and human experimenters.

The following parts introduce the experimental environ-
ment (datasets) and evaluation methods of SOT in detail.

2.2 Environment

High-quality datasets play a vital role in SOT development.
Early datasets represented by VIVID (Collins et al., 2005),
CAVIAR (Fisher, 2004), and PETS (Ferryman & Shahrokni,
2009) mainly focus on surveillance scenarios, which aim to
track humans or cars but lack canonical build standards. Since
2013, well-organized benchmarks represented by OTB (Wu
et al., 2013, 2015) are mainly designed for short-term track-
ing tasks (Kristan et al., 2017; Liang et al., 2015; Mueller
et al., 2016; Li et al., 2015; Kiani Galoogahi et al., 2017),
which assumes no complete occlusion or target out-of-view
happened in this video, as shown in Fig. 4a, b. The aver-
age duration of short-term datasets is always less than one
minute, and the following benchmarks mainly innovate in
video content. (e.g., TC-128 (Liang et al., 2015) evaluates
color-enhanced trackers on color sequences; NUS-PRO (Li
et al., 2015) focuses on tracking pedestrian and rigid objects;
UAV123 (Mueller et al., 2016) assesses unmanned aerial

123



International Journal of Computer Vision

OTB50
ALOV++

Random
Videos

VOT-ST

Tcolor-128
NUS-PRO
OTB100 UAV123 DTB

OxUvA
TrackingNet

LaSOT
GOT-10k UAVDT TOTB

<2013 2013 2014 2015 2016 2017 2018 2019 2020 2021

VideoCube

2022

VOT-ST VOT-ST VOT-ST VOT-ST VOT-ST
VOT-LT

VOT-ST
VOT-LT

VOT-ST
VOT-LT

VOT-ST
VOT-LT

VOT-ST
VOT-LT

Long-term 
tracking

Global 
instance 
tracking

Short-term
Small-scale

Long-term
Large-scale

Spa�otemporal change

Short-term
Small-scale

Long-term
Large-scale

Spa�otemporal change

Fig. 3 The development trend of SOT benchmarks. The red font represents long-term tracking datasets, the italic represents large-scale datasets,
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Fig. 4 Examples of normal space En and challenging space Ec. Sequences in En are selected from existing datasets, while sequences in Ec are
obtained based on space construction rules

vehicle tracking performance; PTB-TIR (Liu et al., 2019) and
VOT-TIR (Kristan et al., 2016) are thermal tracking datasets;
GOT-10k (Huang et al., 2021) includes 563 object classes
based on the WordNet (Miller, 1995)).

Recently, several new benchmarks represented by LaSOT
(Fan et al., 2021) have proposed long-term tracking to satisfy
the demands of real scenarios (Moudgil & Gandhi, 2018;
Valmadre et al., 2018). However, it is hard to separate the
short-term and long-term in the time dimension. Although
short-term videos are usually shorter than one minute, only
adopting one minute as the task boundary is biased. There-
fore, the VOT competition proposes a new criterion – a task
that allows the target to disappear completely can be regarded
as long-term tracking (Lukeźič et al., 2020). In contrast to
the two criteria, allowing the object to disappear for a short
period is more suitable as the decisive factor for long-term

tracking. By removing the constraint hidden in the definition
of short-term tracking that the target should be present in the
tracking process, the experimental environment can include
more long-term videos to achieve the expansion from a short
to a long term. As shown in Fig. 4c, a target may disappear
utterly due to being out of view or be fully occluded, which
is excluded in the short-term tracking environment.

Nonetheless, the implicit continuous motion assumption
restricts long-term tracking environments to single-camera
and single-scene, which is still far from the application
scenarios of SOT. Thus, the global instance tracking envi-
ronment named VideoCube is proposed (Hu et al., 2023). It
includes videos with shot-cut and scene-switching to model
the real world comprehensively (Fig. 4d).

Existing works build environments from different per-
spectives with various rules, but no one has tried to unify
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the environments. When researchers try to analyze problems
from new perspectives, they have to build corresponding
datasets from scratch, significantly reducing research effi-
ciency. This status inspired us to summarize and uniform
existing environments to construct SOTVerse, and help
researchers generate experimental environments effectively.

2.3 Evaluation

2.3.1 Evaluation System

Initialize a tracker in the first frame and continuously record
the tracking results – this evaluation system is a one-pass
evaluation (OPE). To utilize the failure information and
analysis the breakdown reasons, OTB (Wu et al., 2015)
benchmark offers a re-initializationmechanism (OPER). The
re-initialization mechanism also plays a vital role in VOT
competitions (Kristan et al., 2016, 2018, 2019). Trackerswill
be re-initialized after the assessment system detects tracking
failure.

Recently, the VOT2020 challenge (Kristan et al., 2020)
proposes a new anchor-based short-term tracking evaluation
protocol for performance measurement. They use anchors
(i.e., initialization points) to replace the reset mechanism,
and require trackers to run from each anchor forward or
backward, whichever direction generates the longest sub-
sequences. Specially, the intervals between anchors are con-
stant (e.g., 50 frames), and artificial examination is adopted
to ensure each anchor contains complete target information.

Most long-term tracking benchmarks (Fan et al., 2021;
Valmadre et al., 2018) select OPE mechanism as an evalua-
tion system. However, the VOTLT competition (Lukeźič et
al., 2020), which regards target disappearance as the mani-
festation of long-term tracking, hopes trackers can re-locate
the target. Thus, they propose four taxonomies in experi-
ments for accurate performance analysis, include short-term
tracker (ST0), short-term tracker with conservative updat-
ing (ST1), pseudo long-term tracker (LT0), and re-detecting
long-term tracker (LT1).

2.3.2 Performance Indicator

Most evaluation indicators can be summarized from preci-
sion, successful rate, and robustness. Most indicators select
the positional relationship between predicted result pt and
ground-truth gt in the t-th frame to accomplish calculation:

• Precision proposed by OTB (Wu et al., 2015) measures
the euclidean distance between center points of pt and gt
in pixels. Calculating the proportion of frameswhose dis-
tance is less than a threshold and drawing the statistical
results based on different thresholds into a curve gener-
ates the precision plot. Typically, 20 pixels are selected

as a threshold to rank trackers. To eliminate the influence
of object scale, TrackingNet (Muller et al., 2018) adopts
ground-truth scale (width and height) to normalize the
center distance. VideoCube (Hu et al., 2023) provides
a normalized precision metric to eliminate the effect of
target size.

• The overlap of pt and gt is calculated by �(pt , gt ) =
pt

⋂
gt

pt
⋃

gt
. Frames with �(pt , gt ) greater than a threshold

are defined as successful tracking, and the successful
rate (SR)measures the percentage of successfully tracked
frames. Drawing the results based on various thresholds
is the success plot. The OTB (Wu et al., 2013) bench-
mark introduces the area-under-the-curve (AUC) score as
a comprehensive measure of tracker performance. Addi-
tionally, the VOT competition (Čehovin et al., 2016)
establishes and demonstrates that the average overlap
(AO) is equivalent to the AUC score of the success plot.
Subsequent benchmarks (Huang et al., 2021; Hu et al.,
2023; Fan et al., 2021) are mainly based on this indicator
to rank the algorithms.

• Robustness evaluates the stability of tracking. VOT com-
petition (Kristan et al., 2016) initially applies the number
of re-initialization M to calculate robustness, then con-
verts it as Rs = e−SM to interpret the reliability.
The VOT2020 challenge (Kristan et al., 2020) further
improves it by cooperating with the anchor-based eval-
uation protocol (please refer to Sect. 2.3.1), and defines
the robustness as the extent of the sub-sequence before
the tracking failure. This multi-start evaluation is also
adopted by TREK-150 (Dunnhofer et al., 2023), a bench-
mark for visual object tracking in first person vision, and
the authors design a new evaluation metrics named gen-
eralized success robustness (GSR) for evaluation. For the
GIT task (Huet al., 2023), researchers consider the degree
of frame variation and the number of failures to measure
the robustness.

Besides, several long-term tracking benchmarks (Val-
madre et al., 2018; Lukeźič et al., 2020) require trackers to
output disappearance-judgment for calculating the tracking
accuracy, recall, and F-measure.

The above introduction illustrates that existing evaluation
systems and performance indicators are fragmented. More
importantly, the impact of challenging factors has long been
identified (Godec et al., 2013; Han et al., 2008; Nejhum et
al., 2008; Collins, 2003; Kwon & Lee, 2009), but ignored
by existing mechanisms, which mainly focus on the all-
around performance of complete sequences. Therefore,when
constructing the SOTVerse, we first clarify the calculation
formula of performance indicators, then conduct experiments
on various tasks to explore the applicable scope of different
evaluation methods.
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3 The Construction of SOTVerse Space

3.1 3E Paradigm

As shown in Fig. 1, a computer vision task can be described
by the combination of environment, evaluation, and executor.
Table 1 lists the related concepts in the SOT task. We assume
that S denotes a subtask (e.g., short-term tracking task), E is
the corresponding experimental environment organized by
several videos (e.g., short-term dataset), Ms represents the
set of evaluation systems (e.g., OPE mechanism), Mp rep-
resents the set of performance indicators (e.g., precision), T
symbolizes the set of task executors (e.g., trackers and human
subjects). Particularly, × represents the Cartesian product.
Under the 3E Paradigm, the subtask can be represented as:

S = E × Ms × Mp × T (1)

On theonehand, a completeSOT task spaceS canbeobtained
by integrating the various subtasks. On the other hand, the
set of environments, evaluation methods, and task executors
can be separately symbolized as E, M, and T, characterizing
S as:

S = {
Sn1 , Sn2 , . . . , Sc1 , Sc1 , . . .

} = E × M × T (2)

According to 3E Paradigm, we build a user-defined task
space named SOTVerse, which integrates the existing SOT
datasets into a large environmental space E, and provides
multiple indicators to combine a comprehensive evaluation
space M. With the help of SOTVerse, users can quickly
extract relevant data to form the task environment and
select appropriate evaluation methods for performance mea-
surement. The following parts introduce the experimental
environment E and evaluation methods M in detail.

3.2 Environment

Figure 5 illustrates the combination process of SOTVerse,
which can be split into three steps.

3.2.1 Step One: Dataset Selection

First, representative datasets ei are chosen to form normal
space En according to the relationship between subtasks
(short-term tracking Sn1 , long-term tracking Sn2 , global
instance tracking Sn3 ). Selected benchmarks can cover all
subtasks and reflect the characteristics of SOT. Table 2 illus-
trates that the normal space includes 12.56 million frames to
simulate real application scenarios fully.

Besides, we divide the normal space datasets into two cat-
egories: (1) Small-scale datasets (i.e., OTB2015, VOT2016,
VOT2018, VOT2019, and VOTLT2019) are usually utilized

for testing; therefore, we take all the sequences in these
datasets as test sets. (2) Large-scale datasets (i.e., LaSOT,
GOT-10K, and VideoCube) have divided train/val/test sets
while releasing; thus, we retain the division as their original
settings.

3.2.2 Step Two: Attribute Selection

We unify the attribute calculation and determine the thresh-
old of abnormal attributes based on its distribution. All
attributes are calculated from original files (sequences and
ground-truth) without additional manual annotations. We
split attributes into two categories: (1) static attributes only
relate to the current frame, while (2) dynamic attributes
record changes between consecutive frames.

For the t-th frame Ft in the sequence L , we use four values
(xt , yt , wt , ht ) (i.e., the coordinate information of the upper
left corner and the shape of the bounding-box) to represent
the target bounding-box. The calculation rules are as follows:

• The target ratio is defined as rt = ht
wt
. Original target

scale canbe calculated via st = √
wt ht , to furtherweaken

the impact of image resolution,we calculate relative scale
by s

′
t = st√

Wt Ht
(Wt and Ht represent the image resolution

of Ft ).
• Video recorded in special light conditions (e.g., dim light
or blinding light) can be transferred to standard illumi-
nation by multiplying a correction matrix Ct (Finlayson
& Trezzi, 2004). Illumination can be quantified by the
Euclidean distance between Ct and 11×3.

• We use Laplacian transform (Pech-Pacheco et al., 2000)
to calculate the blur bounding-box degree. We first con-
vert the RGB bounding-box into gray-scale Gt , then
convolve Gt with a Laplacian kernel, and calculate the
variance as sharpness.

• Dynamic attributes are generated from the variation of
static attributes. Correspondingly, we define the varia-
tions in two sequential frames as delta ratio, delta relative
scale, delta illumination, and delta blur bounding-box.

• Besides, we use fast motion to quantify the target
center distance between consecutive frames by dt =

‖ct−ct−1‖2√
max(st ,st−1)

.

• Correlation coefficient measures the similarity between
progressive frames. We select the Pearson product-
moment correlation coefficient ρt = cov(Ft ,Ft−1)

σFt σFt−1
, in

which the numerator calculates the covariance of Ft and
Ft−1, and the denominator is the product of the standard
deviation. The correlation coefficient reflects the changes
between consecutive frames and has been normalized in
[0, 1]. Based on its definition and calculation process, the
corrcoef comprehensively reflects the dynamic variation
degree between continuous frames (Fig. 18). According
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Table 1 The symbol of task
description paradigm in SOT

Symbol Implication Definition in SOT

S Task The definition of a task Locating a user-specified target in a video

S Subtask Subtask formed by adding
constraints to the original
task definition

Normal subtask Sn (e.g., short-term tracking,
long-term tracking, global instance tracking) and
challenging subtask Sc (i.e., locating the target in
the challenging situation)

E Environment An execution space of a
task, usually organized by
datasets

Combination of representative SOT datasets

E Subspace Execution space of subtask Normal sub-space En and challenging sub-space Ec

M Evaluation Methods to evaluate the
abilities of executors

Evaluation system Ms and performance indicator Mp

T Executor Task executor Tracker Tt or human subject Th

Fig. 5 The combination process of SOTVerse. First, representative
datasets ei are chosen to form the normal space En according to the
relationship between SOT subtasks (short-term tracking Sn1 , long-term
tracking Sn2 , global instance tracking Sn3 ). Second, we summarize the
challenging factors into ten attributes and automatically label these
attributes per frame. Finally, we design space construction rules, which

help users quickly extract eligible sub-sequences from SOTVerse to
form a challenging space Ec based on research goals. It is worth not-
ing that, due to some repeated sequences in VOT2016, VOT2018, and
VOT2019, we have removed duplicates from the three datasets when
constructing the challenge space, ensuring that the constructed subspace
does not contain any repeated sequences
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Fig. 6 The attribute distribution and example on SOTVerse. We use a
box-plot to illustrate the attribute distribution, the distribution bound-
aries (i.e., the leftmost level of the 25th percentile or the rightmost
level of the 75th percentile) of attribute values over the eight datasets
are regarded as abnormal criteria. Notably, the distribution of the OTB
(Wu et al., 2015) in the abnormal illumination is significantly different

from other datasets, since the partial sequences of OTB are grayscale,
resulting in the calculation result being 0. Therefore, we remove the
OTB before confirming the lower bound of the abnormal illumination.
Similarly, we remove the VideoCube (Hu et al., 2023), which is obvi-
ously different from other datasets, to determine the boundary in the
blur bounding-box

to its distribution on SOTVerse, ρt ≤ 0.75 can be con-
sidered a significant variation between constant frames.

We note that determining the threshold of abnormal
attributes in existing benchmarks is subjective. For exam-
ple, TrackingNet (Muller et al., 2018) and LaSOT (Fan et
al., 2021) regard the area smaller than 1,000 pixels as low
resolution (i.e., tiny object), while GOT-10k (Huang et al.,
2021) considers the target smaller than half of the frames is
tiny. Thus, we first ensure the above calculation formulas are
applicable to all situations (e.g., we eliminate the influence of
image resolution variation). The frame whose attribute value
lies in the abnormal interval is defined as a challenging frame;
otherwise, it is a normal frame. To avoid the influence of sub-
jective factors, we select abnormal thresholds via attributes’
distribution in 12.56 million frames, as shown in Fig. 6 and
Table 3. Consequently, our method excludes human interfer-
ence and suits all benchmarks.

3.2.3 Step Three: Space Construction Rules

Space construction rules are proposed based on intensive
attribute annotation. We hope users can extract relevant data
from the normal space, and quickly form challenging spaces
according to their research goals. If more than half of the
frames in a sequence are challenging frames of attribute ai ,
the sequence will be regarded as a challenging sequence.
The challenging sub-space ci is consisted of challenging
sequences of ai . Figure7 and Algorithm 1 shows the process
of the space construction method, including data screening
and deduplication:

• Data screening aims tofindall challenging sub-sequences
in an original sequence. (1) Firstly, we identify all appro-
priate start points in the original series. It is impractical to
initialize trackers in frames with small or blurry targets,
and manual selection of start points is time-consuming.
Consequently, we utilize the attribute labels of relative
scale and blur bounding-box degree to filter out low-
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Algorithm 1 Framework of space construction.
Input: L: original sequence; |·|: the cardinality; S: the list of start points

in L , sorted by frame number in ascending order; C : the list of
challenging frames in L , sorted by frame number in ascending
order

Output: Ll : the set of challenging sub-sequences in L
/* Step 1: data screening */

1 screening set Ls = ∅

for i ← 0 to |S| − 1 do
2 start flag α ← S[i]

end flag β ← |L|
while β > α do

3 sub-sequence l ← L[α : β]
if |l∩C |

|l| ≥ 0.5 then
4 Ls ← Ls ∪ l

5 else
6 β ← β − 1

/* Step 2: data deduplication */
7 Ls ← DescendingSort(Ls)

8 extraction set Ll = ∅

for i ← 0 to |Ls | − 1 do
9 sub-sequence ls ← Ls [i]

for j ← 0 to |Lc| − 1 do
10 sub-sequence lc ← Lc[ j]

if |ls∩lc |
|ls | ≥ 0.5 then

11 if ( j == |Lc| − 1) ∧ (|Ls | ≥ 100) then
12 Ll ← Ll ∪ ls

13 return Ll

quality frames (those with a relative scale less than the
median value or blur degree greater than the median
value).Additionally, frames that arewithin a proximity of
less than 10 frames to the subsequent absence of the target
are excluded, leaving only the remaining frames as poten-
tial start points. (2) Typically, the start flag is sequentially
read from the list of start points. Afterwards, the end
flag is moved in reverse order through the sequence,
and this process continues until the sequence interval
meets the condition (i.e., more than half of the frames in
the sequence are considered challenging frames). Once
the end flag is identified (considering its position as
the endpoint of this combination), we save this start-
end combination, choose the next start point, and repeat
the aforementioned procedure. The data screening rules
guarantee that all eligible sub-sequences are not over-
looked.

• Data deduplication aims to remove the unqualified
sub-sequences. Based on their length, we arrange all sub-
sequences in descending order and keep the longest series
as thefirst baseline (i.e., in this process, a baseline denotes
a sub-sequence that has been selected in the challenging
space). Other sub-sequences will be compared with all

baselines and calculate the overlapping ratio (i.e., over-
lapping ratio indicates the proportion of exactly the same
frame in two sequences). A series that has a high over-
lapping ratio or is less than 100 frames will be discarded;
otherwise, it will be regarded as a new baseline. We
keep all baselines as the extraction result of the origi-
nal sequence. Eligible sub-sequences combine into the
challenging sub-space ci of attribute ai . All sub-spaces
ci comprise the challenging space Ec (Table 3).

To better illustrate the performance of the proposed space
construction rules,we present Fig. 8 as an example. The
VOT official provides manual annotations for datasets on
a frame-level basis, which can serve as a human baseline for
evaluating the reliability of our method. Here, we choose the
iceskater1 sequence from VOT2016 (Kristan et al., 2016) as
an example and compare the size change annotations pro-
vided by VOT with the delta scale annotations generated by
SOTVerse.

The proposed automated label generation procedure cal-
culates the variation in the object’s bounding box for each
frame, and then determines whether there is a size change
based on a threshold of 0.01. Utilizing this approach, we
apply space construction rules to identify sub-sequences that
meet the predefined criteria within the given sequence. It
is discovered that the range of frames from #530 to #633
exhibit concentrated challenging factors (with at least half
of the frames manifesting this challenging factor) and meet
the minimum length requirement of 100 frames. In compar-
ison to the manually labeled annotations (where annotators
identified size changes between frames #563 and #637), the
annotations generated by SOTVerse encompass 96% of the
manually determined range. Furthermore, several specific
cases (Fig. 8a–c) have provided evidence supporting the reli-
ability of SOTVerse.

Figure 5 illustrates the train and test sets for challeng-
ing space. All sub-sequences in the train set are selected
from train and validation sets of large-scale datasets (i.e.,
GOT-10k, LaSOT, andVideoCube). All sub-sequences in the
test set are chosen from the test sets of large-scale datasets
and whole small-scale datasets (i.e., OTB2015, VOT2016,
VOT2018, VOT2019, and VOTLT2019). Please refer to
“Appendix A” of the appendices for detailed information.

3.3 Evaluation

3.3.1 Evaluation System

SOTVerse provides two evaluation systems – the traditional
OPE (Wu et al., 2013, 2015) system and the mechanismwith
re-initialization (R-OPE) (Hu et al., 2023), as shown in Fig. 9.
UnlikeOTB (Wu et al., 2015) orVOT competition (Kristan et
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Fig. 7 Schematic diagramof space construction.a–dDisplay screening rules, aiming tofind all eligible sub-sequences. e–hDisplay the deduplication
rules, aiming to remove the unqualified sub-sequences

al., 2016, 2018, 2019) that only supports reset in the short-
term tracking task, SOTVerse allows re-initialization in all
subtasks (i.e., short-term tracking, long-term tracking, and
global instance tracking) to maximize sequence utilization.
Specifically, the tracking failure is decided by the overlap of

pt and gt (�(pt , gt ) = pt
⋂

gt
pt

⋃
gt

< 0.5will be regarded as fail-
ure). Therefore, the occurrence of a re-initialization requires
two conditions: (1) The algorithm fails consecutively for 10
target-present frames (frames where the target is not visible
are not counted). (2) The algorithm will be re-initialized at
the next start point (the start pointmust include a high-quality
visible target).

3.3.2 Performance Indicator

Suppose the evaluation environment E is composed of |E |
sequences, where |·| is the cardinality. For the t-th frame Ft
in a sequence L , suppose that pt is the position predicted by
a tracker T , and gt is the ground-truth. Specifically, a frame
without the target is regarded as an empty set (i.e., gt = φ)
and excluded by the evaluation process. Traditional precision
score and success score of frame Ft are calculated by:

dt = ∥
∥cp − cg

∥
∥
2

st = �(pt , gt ) = pt
⋂

gt
pt

⋃
gt

(3)

where dt is the distance between center points cp and cg ,
�(·) is the intersection over union.

Recently, normalized precision score ((Hu et al., 2023))
is proposed to exclude the influence of target size and
frame resolution. Trackers with a predicted center outside
the ground-truth will add a penalty item dt p (i.e., the shortest
distance between center point cp and the ground-truth edge).
For trackers whose center point falls into the ground-truth,
the center distance dt

′
equals the original precision dt (i.e.,

dt p = 0).

N (dt ) = dt
′

max({di ′ | i ∈ Ft })
dt

′ = dt + dt
p

(4)

Obviously, the precision P(E), normalized precision
N (E), and success S(E) of environment E can be defined
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a b c

d

Fig. 8 Comparison of the SOTVerse challenging space construc-
tion and the manual annotation. We take the iceskater1 sequence of
VOT2016 (Kristan et al., 2016) as an example, which provides manual
annotations for size change. Thesemanual annotations can be compared
with the delta scale annotations generated by SOTVerse. Compared
with the manual annotations provided by VOT official, the proposed
challenging space construction rules can identify challenging frames

that are scattered (a, #207) and continuous patterns that are ignored by
human annotators (b, #530–#561). Additionally, human annotators face
challenges in accurately determining the endpoint of the challenging
sub-sequence interval, whichmay result in the inclusion of some redun-
dant frames (c, #634–#637). For #562–#633 (d), both human annotators
and SOTVerse have effectively detected the challenge

Fig. 9 The execution process of two evaluation mechanisms. The OPE
(one-pass evaluation) mechanism aims to utilize the target’s position in
the first frame to initialize the tracker, and requires the tracker to output
the predicted result in each subsequent frame. The R-OPE (one-pass

evaluation with restart) mechanism will detect the tracking process,
and a tracker that fails for 10 consecutive frames will trigger the re-
initializationmechanism and be reset at the next start point (only frames
with high-quality target information can be regarded as a start point)

as:

P(E) = 1

|E |
|E |∑

l=1

1

|L| |{t : dt ≤ θd}|

N (E) = 1

|E |
|E |∑

l=1

1

|L| |
{
t : N (dt ) ≤ θ

′
d

}
|

S(E) = 1

|E |
|E |∑

l=1

1

|L| |{t : st ≥ θs}|

(5)

Calculating the proportion of frames whose distance dt ≤ θd
and drawing the statistical results based on different θd
into a curve generates the precision plot. Typically, exist-
ing benchmarks always select θd = 20 to rank trackers.
Similarly, drawing statistical results based on different θd

′ ∈
[0, 1] into a curve generates the normalized precision plot.
However, directly selecting a θd

′
to rank executorsmay intro-

duce human factors. Thus, the proportion of frames whose
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Fig. 10 Evaluation process of normal space En and challenging space
Ec. The green dotted line and orange dotted lines respectively indicate
the evaluation process of En and Ec

predicted center cp successfully falls in the ground-truth rect-
angle gt are selected to rank trackers. Frames with overlap
st ≥ θs are defined as successful tracking. Draw the results
based on various overlap threshold θs into a curve is the suc-
cess plot, where the mAO (mean average overlap) is wildly
used to rank trackers.

Evidently, traditional precision plot, normalized precision
plot, and success plot average scores on complete series
to generate the final result. Challenging space that already
contains enough challenging frames can directly use these
indicators. But for normal sequences composed of most nor-
mal frames and a few challenging frames, the above metrics
may ignore the influence of challenging factors due to the
average calculation. Thus, SOTVerse provides three novel
indicators to concentrate on the impact of challenges:

• Challengingplot.For the t-th frame Ft in L , suppose that
ρt is the correlation coefficient between Ft and Ft−1. A
frame with st ≥ 0.5 is defined as success frame, and vice
versa is fail frame. The challenging score is defined as:

C(E) = 1

|E |
|E |∑

l=1

|{t : st ≥ 0.5}|
|{t : ρt ≤ θρ

}| (6)

Calculating the proportion of success frames on the chal-
lenging part (i.e., ρt ≤ θρ) and drawing the statistical
results based on different θρ into a curve generates the
challenging plot. SOTVerse selects θρ = 0.75 to rank
trackers.

• Attribute plot. Attribute plot A(·) aims to find the
attribute that affects trackingmost. For each tracker, SOT-
Verse generates the A(·) via three steps. (1) SOTVerse
first finds all fail frames (i.e., st < 0.5), then checks their
attribute labels, and finally calculates the proportion of
a specific challenging factor on the fail frames, and gen-
erates the attribute plot based on fail frames A f (·). (2)
SOTVerse then calculates the proportion of each attribute
based on the success frames (i.e., st ≥ 0.5) of each algo-
rithm, and generates the attribute plot based on success
framesAs(·). (3) Finally, the attribute plotA(·) is the dif-
ference ofA f (·) andAs(·) (i.e.,A(·) = A f (·)−As(·)).
Unlike other indicators to rank algorithms, the attribute
plot intuitively reveals the most likely reasons causing
failures for each tracker. Please refer to “Appendix C”
for an example of attribute plot.

• Robust plot. The robust plot R(·) aims to exhibit the
performance of trackers in the R-OPE mechanism. SOT-
Verse counts the number of restarts for each video,
divides the entire video into several segments based on
the restart point, and returns the longest sub-sequence
that the algorithm successfully runs. Taking the number
of restarts and themean value of the longest sub-sequence
as abscissa and ordinate can generate a robust plot. Track-
ers closer to the upper left corner have better performance
(indicating successful tracking in longer sequences with
rare re-initializations). Considering that the final number
of restarts and the longest sub-sequence will be affected
by the characteristics of a specific dataset itself, this
indicator is more of the tracking robustness through qual-
itative analysis rather than conducting detailed numerical
comparisons.

4 Experiments

4.1 Implementation Details

Weselect 23 represent algorithms as task executor Tt and con-
duct experiments based on 3E Paradigm (Table 4). The 23
trackers can be divided into 4 categories based on their model
architectures. (1) Correlation filter (CF) based trackers: KCF
(Henriques et al., 2014) and ECO (Danelljan et al., 2017).
(2) Siamese neural network (SNN) based trackers: SiamFC
(Bertinetto et al., 2016), SiamRPN (Li et al., 2018), DaSi-
amRPN (Zhu et al., 2018), SiamRPN++ (Li et al., 2019),
SPLT (Yan et al., 2019), SiamDW (Zhang & Peng, 2019),
SiamCAR (Guo et al., 2020), SiamFC++ (Xu et al., 2020),
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Fig. 11 Experiments in normal space with OPE mechanisms. Three columns represent the results in the short-term tracking task (left), long-term
tracking task (middle), and global instance tracking task (right). Each task is evaluated by success plots (A1–A3), challenging plots (B1–B3) and
attribute plots (C1–C3)

Challenging 
Frames

Normal 
Frames

0.5

0.90

Overall
Performance

0.75

0.468

Fig. 12 Comparison of performance under success plot (LEFT) and challenging plot (RIGHT), taking OTB (Wu et al., 2015) as an example
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Fig. 13 The composition of normal space. (Left) The distribution of corrcoef values and sequence lengths, each point representing a sub-sequence.
(Right) The distribution of sequence lengths

Ocean (Zhang et al., 2020), and SiamRCNN (Voigtlaender
et al., 2020). (3) Trackers that combine CF and SNN: ATOM
(Danelljan et al., 2019), DiMP (Bhat et al., 2019), PrDiMP
(Danelljan et al., 2020), SuperDiMP (Danelljan et al., 2020),
and KeepTrack (Mayer et al., 2021). (4) Transformer-based
trackers, like MixFormer (Cui et al., 2022), OSTrack (Ye
et al., 2022), and GRM (Gao et al., 2023). (5) Trackers with
custom networks, like GlobalTrack (Huang et al., 2020) with
zero cumulative error, KYS (Bhat et al., 2020) with scene
information, andUnicorn (Yan et al., 2022) that accomplishes
the unification of learning paradigm for different tracking
tasks.

Specifically, by comparing with precision plots and nor-
malized precision plots, the success plots utilize both infor-
mation about the position and object size for evaluation.
Thus, we only retain the success plots in this section to show
the results more efficiently. Please refer to “Appendix D” of
the appendices for detailed information and comprehensive
experimental results for the 23 representative trackers.

4.2 Experiments in Normal Space

Figures 11, 12, 13 and14 illustrate the experimental results
in normal space. We first conduct experiments on the meta-
datasets ei for each subtask Sni , then average results as the
final performance for the current subtask. We add a figure
number at the bottom left for each subplot to better illustrate
the experimental results.

4.2.1 Experiments in OPE Mechanism

Figure 11 shows the performance of trackers under the OPE
mechanism.
Influence of Task Constraints on Tracking Performance

From the task perspective, the widely used success plots
(Fig. 11A1–A3) show a downward trend in trackers’ perfor-

mance from short-term tracking to global instance tracking.
This phenomenon indicates that with the relaxation of
task constraints, more challenging factors are occurred and
require higher tracking ability. Especially compared with the
first two tasks, performance drops themost on global instance
tracking, which indicates that as the SOT task that is closest
to the actual application scenario, global instance tracking is
still a considerable difficulty to existing methods.
Limitations of Existing Evaluation Metrics.

Before conducting analyses based on newmetrics, we first
illustrate the limitations of existingmetrics through an exper-
iment inFig. 12.Existingbenchmarks only evaluate complete
sequences but ignore the challenging frames. Taking theOTB
(Wu et al., 2015) as an example, the traditional success plot
(left) for KeepTrack (Mayer et al., 2021) indicates it success-
fully tracks 90% frames, while the challenging plot (right)
proposed in this paper shows that the success rate of challeng-
ing frames is only 46.8%. Obviously, the existing evaluation
system ignores the influence of challenging factors.
Tracking Evaluation via Challenging Plots.

The challenging plots (Fig. 11B1–B3) demonstrate that
the algorithm’s success rate on challenging frames is basi-
cally lower than 50%.

Observe three points in challenging plots: the inflection
point, the point with θρ = 0.75, and the endpoint on the right
(θρ = 1). Attention that the variation trends of challenging
plots are not totally similar, meaning the decisive factors for
influencing algorithm performance of various tasks are dif-
ferent:

• Challenging factorsmainly influence short-termtrack-
ing task. In short-term tracking (Fig. 11B1), the success
rate of the majority of algorithms shows improvement
with higher correlation coefficients, suggesting that chal-
lenging factors play a significant role in determining the
success rate.
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Fig. 14 Experiments in normal space with R-OPE mechanisms. Three
columns represent the results in the short-term tracking task (left), long-
term tracking task (middle), and global instance tracking task (right).

Each task is evaluated by success plots (D1–D3), challenging plots
(E1–E3), attribute plots (F1–F3), and robust plots (G1–G3)

• Challenging factors and sequence lengthmainly influ-
ence long-term tracking task. In long-term tracking
(Fig. 11B2), the performance improves with the addi-
tion of the correlation coefficient in challenging frame
areas. However, this improvement slows down when the
sequence contains more normal frames, indicating that
sequence length becomes the primary factor influencing
the success rate.

• Shot-switchingmainly influences global instance track-
ing task. In the global instance tracking task (Fig. 11B3)
that involves shot switching, the curve reaches an inflec-
tion point at very low correlation coefficients. Beyond
this inflection point, the curve exhibits a gentle slope.
As a result, the crucial aspect influencing algorithm per-
formance in the GIT task is not challenging factors, but
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rather the ability to re-locate the target position after each
shot switching.

Based on the definition of attribute plot, it intuitively
reveals the most likely reasons that cause failures for each
tracker in the specific environment. In otherwords, the deeper
color of the attribute plots shows that this challenging factor
is more prominent in the experimental environment, and the
algorithm performs poorly in facing this challenge.

For attribute plots (Fig. 11C1–C3), in the static attributes,
the object scale andmotion blur has a greater impact on track-
ing performance; in the dynamic attributes, the fast motion
has a more significant effect on success rates. Here are some
possible reasons: (1) Target with abnormal scale will chal-
lenge trackers, since the evaluation indicators are mainly
based on IoU, while trackers are usually hard to accurately
fit the tiny target bounding-box. (2) Blur is usually caused by
fast motion, which may vary the target appearance informa-
tion and affect the tracking process. (3) Fast motion not only
may cause target blur, but also may lead to tracking failure
since the target location between the continuous frames may
be huge changed.

4.2.2 Experiments in R-OPE Mechanism

Figure 14 shows the performance of trackers under the
R-OPE mechanism. The R-OPE mechanism allows re-
initialization after failure and avoids the wastage of subse-
quent sequences. Thus, the success score in Fig. 14D1–D3
are higher than OPE mechanism (Fig. 11A1–A3).

The robust plots (Fig. 14G1–G3) visually display the
relationship between the longest successfully tracked sub-
sequence and the restart times. By comparing trackers’
performance on different tracking tasks via robust plots, we
can summarize that:

• Most SOTA algorithms can complete tracking with
rare re-initialization in the short-term tracking. Fur-
thermore, forGOT-10k (Huang et al., 2021)with a shorter
average length, the SOTA trackers can track the entire
videowithout re-initializations (Fig. 30f). The rare restart
times and slight score differences under the OPE and
R-OPE mechanisms illustrate that existing SOTA track-
ers can keep robust tracking ability in most short-term
sequences.

• Trackers are still easy to fail in long-term tracking
and global instance tracking task.G2 in Fig. 14 demon-
strates that most excellent algorithms can continuously
track 1000 to 1800 frames and then fail due to the influ-
ence of challenging attributes. The longest successfully
tracked sub-sequence length is still far from the length
interval (1k to 10k frames) of the long-term tracking task
represented in Fig. 13. G3 in Fig. 14 shows that even if

the algorithm restarts dozens of times, it is still difficult
to re-locate the object quickly when the shot switch-
ing occurs again in the global instance tracking task.
Thus, the robustness of existing trackers under longer
sequences can be further improved.

Please refer to “Appendices E, F, andG” of the appendices
for the initial experimental results under each benchmark.

4.3 Experiments in Challenging Space

Ten challenge attribute spaces are utilized for conducting
experiments. The evaluation of performance under the OPE
mechanism is based on three chosen indicators: precision
plot, normalized precision plot, and success plot.

To better compare the performance changes under dif-
ferent sub-spaces, we plot the algorithm scores in Fig. 15.
Since the sequence length is an essential factor affecting
the results, while the sequence lengths in challenging spaces
are quite diverse, we recalculate the original results (H1, I1,
J1) by using sequence length as the weight and generate the
weighted result (H2, I2, J2). Here, we select the four trackers
(GRM (Gao et al., 2023), Unicorn (Yan et al., 2022), Keep-
Track (Mayer et al., 2021), and SiamRCNN (Voigtlaender
et al., 2020)) as representative models to exhibit the results,
since they are excellent trackers with different model struc-
tures. For detailed results of the 23 trackers, please refer to
Table 7 to 9 (based on original indicators) and Table 10 to 12
for weighted results.
Influence of Task Constraints.

Obviously, all trackers have the worst performance on
VideoCube (Hu et al., 2023), indicating that the GIT task is
challenging for even SOTA algorithms. Besides, compared
to the challenging factors that have widely existed in each
subtask, new challenges included by broadening the task con-
straints (i.e., relocating the target in shot-switching) have a
more significant influence on tracking performance. It also
indicates that the correct modeling task is vital in domain
development.
Influence of Challenging Factors.

Most algorithms perform poorly in challenging spaces
(orange area in Fig. 15). However, some trackers score rel-
atively high on initial results (H1, I1, J1) – one possible
reason is multiple challenging spaces contain many short
sub-sequences extracted fromGOT-10k (Huang et al., 2021).
The weighted results decrease (H2, I2, J3) indicates that
most challenging factors (e.g., fast motion, abnormal ratio,
and abnormal scale) significantly impact the tracking perfor-
mance; existing algorithms are still required to enhance the
tracking robustness under challenging situations.

The four represent trackers are based on different model
architectures. GRM (Gao et al., 2023) is a transformer-
based tracker with a generalized relation modeling method.
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Fig. 15 Experiments in all sub-spaces with OPE mechanism, rep-
resented by GRM (Gao et al., 2023), Unicorn (Yan et al., 2022),
KeepTrack (Mayer et al., 2021), and SiamRCNN (Voigtlaender et al.,
2020). The Green and orange backgrounds represent the performance
in normal space and challenge space respectively. The blue background

represents the average performance over all sub-spaces. Results are cal-
culated by precision plots (H1–H2), normalized precision plots (I1–I2),
and success plots (J1–J2). The left column (H1, I1, J1) is generated by
original indicators, while the right column (H2, I2, J2) is weighted by
sequences’ length

It performs well in most sub-spaces than other trackers, indi-
cating that the flexible relation modeling method (i.e., by
selecting appropriate search tokens to interact with tem-
plate tokens) can provide powerful tracking ability. The
SiamRCNN (Voigtlaender et al., 2020) selects the siamese
network as the basic model structure and combines a two-
stage scheme with a new trajectory-based dynamic planning
algorithm. Besides, the re-detection mechanism in SiamR-
CNN helps it to accomplish stable tracking in the abruption
of appearance or motion information. KeepTrack (Mayer et
al., 2021) model is improved by the DiMP series ((Danelljan
et al., 2019; Bhat et al., 2019; Danelljan et al., 2020)), and has
an enhanced ability to discriminate interferers in challenging
situations. Specially, although the Unicorn (Yan et al., 2022)
method is designed for four different tasks, it achieves great
performanceonSOTVerse, indicating that it has learnedmore

essential information to effectively execute visual tasks. The
combination of different sub-tasks in SOTVerse can help us
comprehensively analyze various executors, rather than only
comparing the performance of the algorithms on a single
dataset with shallow conclusions.

To better illustrate the impact of challenging space on
tracking performance, we present an example via Fig. 16.
The top 3 trackers in the Drone-13 sequence of LaSOT (Fan
et al., 2021) achieve nearly 0.5 IoU score in this sequence,
while performing poorly on two sub-sequences that belong
to fast-motion challenge, indicating that the space construc-
tion rule can effectively dig out high-challenging data in the
complete environment.

“Appendix H” of the appendices shows the detailed distri-
bution of challenge sub-spaces, and “Appendix I” shows the
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#0001#0001 #0450#0450 #0900#0900 #1300#1300 #1700#1700 #2100#2100

#0920#0920 #1050#1050 #1250#1250 #2650 #3050 #3600

Fast mo�on Fast mo�on

MixFormer 0.49
OSTrack 0.47
GRM 0.46

MixFormer 0.02
OSTrack 0.04
GRM 0.03

MixFormer 0.19
OSTrack 0.16
GRM 0.17

Fig. 16 The impact of challenging space on tracking performance. We
take the Drone-13 sequence of LaSOT (Fan et al., 2021) as an example,
in which the top 3 algorithms are selected to illustrate the IoU scores
with ground-truth (� green bounding-box represents ground-truth, �
yellow bounding-box represents MixFormer (Cui et al., 2022), � blue
bounding-box represents OSTrack (Ye et al., 2022), � red bounding-

box represents GRM (Gao et al., 2023)). Based on the challenging
space construction rule, two sub-sequences in Drone-13 belong to fast-
motion. Compared with the complete sequence in normal space, the
performance of the three algorithms in challenging space has decreased
significantly (Color figure online)

specific experimental results. Please refer to “Appendices H
and I” of the appendices for the initial experimental results.

5 Conclusion

This paper first proposes a 3E Paradigm to describe computer
vision tasks by three components (i.e., environment, evalua-
tion, and executor), then construct representative benchmarks
as SOTVerse with 12.56 million frames. SOTVerse contains
a comprehensive and user-defined environment and a thor-
oughgoing evaluation scheme, allowing users to customize
tasks according to research purposes.We also conduct exten-
sive experiments in the SOTVerse and conduct a performance
analysis on various executors.

In future work, we will continue to maintain the platform
to support users to continuously enrich the content of the
SOTVerse through interaction and expansion functions, and
create new sub-spaces according to their respective research
purposes. Additionally, we encourage users to expand into
new visual or other domain tasks and create new meta-
verse spaces following our defined paradigm. We welcome

researchers to join our platform with their newly created
metaverse spaces accepted by the research community, and
together promote the promotion of the metaverse paradigm
to form broader research outcomes.

Data Availability All data will be made available on reasonable request.

Code Availability The toolkit and experimental results will be made
publicly available.
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Appendix A: Subsets of Challenging Space

Due to some repeated sequences in VOT2016 (Kristan et al.,
2016), VOT2018 (Kristan et al., 2018), and VOT2019 (Kris-
tan et al., 2019), we have removed duplicates from the three
datasets when constructing the challenge space, ensuring
that the constructed subspace does not contain any repeated
sequences (Fig. 17). Specifically, we carefully examined
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Fig. 17 Distribution of subsets in challenging space
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Table 5 The non-repetitive sequences from the three VOT datasets (VOT2016 (Kristan et al., 2016), VOT2018 (Kristan et al., 2018), and
VOT2019 (Kristan et al., 2019))

Sequence Data source Sequence Data source Sequence Data source Sequence Data source

agility VOT2019 dinosaur VOT2016 hand2 VOT2019 racing VOT2016

ants1 VOT2018 dribble VOT2019 handball1 VOT2016 road VOT2016

ants3 VOT2018 drone_across VOT2018 handball2 VOT2016 rowing VOT2019

bag VOT2016 drone_flip VOT2018 helicopter VOT2016 shaking VOT2016

ball1 VOT2016 drone1 VOT2018 iceskater1 VOT2016 sheep VOT2016

ball2 VOT2016 fernando VOT2016 iceskater2 VOT2016 singer1 VOT2016

ball3 VOT2019 fish1 VOT2016 lamb VOT2019 singer2 VOT2016

basketball VOT2016 fish2 VOT2016 leaves VOT2016 singer3 VOT2016

birds1 VOT2016 fish3 VOT2016 marathon VOT2019 soccer1 VOT2016

birds2 VOT2016 fish4 VOT2016 marching VOT2016 soccer2 VOT2016

blanket VOT2016 flamingo1 VOT2018 matrix VOT2016 soldier VOT2016

bmx VOT2016 frisbee VOT2018 monkey VOT2019 sphere VOT2016

bolt1 VOT2016 girl VOT2016 motocross1 VOT2016 surfing VOT2019

bolt2 VOT2016 glove VOT2016 motocross2 VOT2016 tiger VOT2016

book VOT2016 godfather VOT2016 nature VOT2016 traffic VOT2016

butterfly VOT2016 graduate VOT2016 octopus VOT2016 tunnel VOT2016

car1 VOT2016 gymnastics1 VOT2016 pedestrian1 VOT2016 wheel VOT2019

car2 VOT2016 gymnastics2 VOT2016 pedestrian2 VOT2016 wiper VOT2016

conduction1 VOT2018 gymnastics3 VOT2016 polo VOT2019 zebrafish1 VOT2018

crabs1 VOT2018 gymnastics4 VOT2016 rabbit VOT2016

crossing VOT2016 hand VOT2016 rabbit2 VOT2019

the sequences of VOT2016, VOT2018, and VOT2019 and
retained only the non-duplicated ones. After the selection
process, a total of 82 sequences remained out of the original
180 sequences, as illustrated in the Table 5. Out of these,
60 sequences belong to VOT2016, 10 sequences belong to
VOT2018, and 12 sequences belong to VOT2019.

Appendix B: Relationship of Dynamic
Attributes

The last row in Fig. 18 indicates that variations of the other
five dynamic attributes will change the corrcoef. In addition,
compared with the other five dynamic attributes, corrcoef
can better comprehensively reflect the dynamic variations in
the video sequence. Thus, it can be used as an indicator of
variation degree in the tracking process.
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Fig. 18 Relationship of dynamic attributes in SOTVerse

Appendix C: An Example of Attribute Plot

As shown in Fig. 19, sub-figure (a) is from car-6 in
LaSOT (Fan et al., 2021) dataset. Here, we select six algo-
rithms (GRM (Gao et al., 2023), Unicorn (Yan et al., 2022),
and OSTrack (Ye et al., 2022) representing the latest state-
of-the-art algorithms; while ECO (Danelljan et al., 2017),
SiamFC (Bertinetto et al., 2016), and KCF (Henriques et al.,
2014) representing classical algorithms) as representatives
to generate the attribute plot. Among them, sub-figure (b)

employs the previous method, which calculates the propor-
tions based on the fail frames (A f (·)). In contrast, sub-figure
(c) calculates the proportion of each attribute based on the
success frames (As(·)). Sub-figure (d) represents the differ-
ence between sub-figures (b) and (c) and serves as the updated
attribute plot A(·) (i.e., A(·) = A f (·) − As(·)).

Clearly, the utilization of the previous calculation method
(b) highlights a substantial correlation between the fail
frames and the challenging factor of blur bounding-box.
However, upon closer examination of sub-figure (c), it is
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Fig. 19 An example of the calculation process of the attribute plot

evident that blur bounding-box remains consistently preva-
lent across all successful frames. A comparison between (b)
and (c) demonstrates that blur bounding-box is a widely
observed challenging factor in the majority of frames within
this sequence.However, it does not serve as the primary cause
of algorithm failure. Sub-figure (d) offers a more precise
depiction of the challenging factors that contribute to algo-
rithm failure. For instance, in the case of GRM, its failure
primarily results from the fast motion of the target.

Sub-figures (e–h) are from the person-1 sequence in
LaSOT dataset, analyzed using the same process as (a–d).
For the GRM, Unicorn, and OSTrack methods, the most
challenging factors in this sequence are a series of dynamic
attributes (top right corner of sub-figure (h)), including
variations in illumination, scale, ratio, and fast movement.
Moreover, within sub-figure (h), negative value regions indi-

cate that the algorithms excel in these attributes, making
themmore likely to achieve successful target tracking inmost
cases. For instance, the GRM, Unicorn, and OSTrack meth-
ods exhibit strong tracking capabilities on the static attributes
of abnormal scale and ratio within this sequence.

Appendix D: Comprehensive Experimental
Results

All experiments are performed on a server with 4 NVIDIA
TITAN RTX GPUs and a 64 Intel(R) Xeon(R) Gold 5218
CPU @ 2.30GHz. We use the parameters provided by the
original authors.
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Fig. 20 Experiments in normal space. Three columns represent the
results in the short-term tracking task (left), long-term tracking task
(middle), and global instance tracking task (right). Each task is evalu-

ated by precision plots in OPE (a1–a3), normalized precision plots in
OPE (b1–b3), precision plots in R-OPE (c1–c3), normalized precision
plots in R-OPE (d1–d3)
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AppendixE: Experiments inShort-TermTrack-
ing

E.1 Experiments in OTB (Wu et al., 2015)

Fig. 21 Experiments in OTB (Wu et al., 2015) with OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c success plot,
d challenging plot, and e attribute plot

Fig. 22 Experiments in OTB (Wu et al., 2015) with R-OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c success plot,
d challenging plot, e attribute plot, and f robust plot
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E.2 Experiments in VOT2016 (Kristan et al., 2016)

Fig. 23 Experiments in VOT2016 (Kristan et al., 2016) with OPEmechanisms, evaluated by a precision plot, b normalized precision plot, c success
plot, d challenging plot, and e attribute plot

Fig. 24 Experiments in VOT2016 (Kristan et al., 2016) with R-OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c
success plot, d challenging plot, e attribute plot, and f robust plot
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E.3 Experiments in VOT2018 (Kristan et al., 2018)

Fig. 25 Experiments in VOT2018 (Kristan et al., 2018) with OPEmechanisms, evaluated by a precision plot, b normalized precision plot, c success
plot, d challenging plot, and e attribute plot

Fig. 26 Experiments in VOT2018 (Kristan et al., 2018) with R-OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c
success plot, d challenging plot, e attribute plot, and f robust plot
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E.4 Experiments in VOT2019 (Kristan et al., 2019)

Fig. 27 Experiments in VOT2019 (Kristan et al., 2019) with OPEmechanisms, evaluated by a precision plot, b normalized precision plot, c success
plot, d challenging plot, and e attribute plot

Fig. 28 Experiments in VOT2019 (Kristan et al., 2019) with R-OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c
success plot, d challenging plot, e attribute plot, and f robust plot
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E.5 Experiments in GOT-10k (Huang et al., 2021)

Fig. 29 Experiments in GOT-10k (Huang et al., 2021) with OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c success
plot, d challenging plot, and e attribute plot

Fig. 30 Experiments in GOT-10k (Huang et al., 2021) with R-OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c
success plot, d challenging plot, e attribute plot, and f robust plot
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Appendix F: Experiments in Long-termTrack-
ing

F.1 Experiments in VOTLT2019 (Kristan et al., 2019)

Fig. 31 Experiments in VOTLT2019 (Kristan et al., 2019) with OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c
success plot, d challenging plot, and e attribute plot

Fig. 32 Experiments in VOTLT2019 (Kristan et al., 2019) with R-OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c
success plot, d challenging plot, e attribute plot, and f robust plot
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F.2 Experiments in LaSOT (Fan et al., 2021)

Fig. 33 Experiments in LaSOT (Fan et al., 2021) with OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c success plot,
d challenging plot, and e attribute plot

Fig. 34 Experiments in LaSOT (Fan et al., 2021) with R-OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c success
plot, d challenging plot, e attribute plot, and f robust plot
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Appendix G: Experiments in Global Instance
Tracking

G.1 Experiments in VideoCube (Hu et al., 2023)

Fig. 35 Experiments in VideoCube (Hu et al., 2023) with OPE mechanisms, evaluated by a precision plot, b normalized precision plot, c success
plot, d challenging plot, and e attribute plot

Fig. 36 Experiments in VideoCube (Hu et al., 2023) with R-OPEmechanisms, evaluated by a precision plot, b normalized precision plot, c success
plot, d challenging plot, e attribute plot, and f robust plot
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Appendix H: The Composition of Challenging
Space

H.1 Abnormal Ratio

Fig. 37 The composition of abnormal ratio space. aThe distribution of attribute values and sequence lengths, each point representing a sub-sequence.
b The distribution of sequence lengths. c The distribution of attribute values
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H.2 Abnormal Scale

Fig. 38 The composition of abnormal scale space.aThedistribution of attribute values and sequence lengths, each point representing a sub-sequence.
b The distribution of sequence lengths. c The distribution of attribute values
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H.3 Abnormal Illumination

Fig. 39 The composition of abnormal illumination space. a The distribution of attribute values and sequence lengths, each point representing a
sub-sequence. b The distribution of sequence lengths. c The distribution of attribute values
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H.4 Blur Bounding-box

Fig. 40 The composition of blur bounding-box space. a The distribution of attribute values and sequence lengths, each point representing a
sub-sequence. b The distribution of sequence lengths. c The distribution of attribute values
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H.5 Delta Ratio

Fig. 41 The composition of delta ratio space. a The distribution of attribute values and sequence lengths, each point representing a sub-sequence.
b The distribution of sequence lengths. c The distribution of attribute values
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H.6 Delta Scale

Fig. 42 The composition of delta scale space. a The distribution of attribute values and sequence lengths, each point representing a sub-sequence.
b The distribution of sequence lengths. c The distribution of attribute values
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H.7 Delta Illumination

Fig. 43 The composition of delta illumination. a The distribution of attribute values and sequence lengths, each point representing a sub-sequence.
b The distribution of sequence lengths. c The distribution of attribute values
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H.8 Delta Blur Bounding-Box

Fig. 44 The composition of delta blur bounding-box. a The distribution of attribute values and sequence lengths, each point representing a
sub-sequence. b The distribution of sequence lengths. c The distribution of attribute values
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H.9 Fast Motion

Fig. 45 The composition of fast motion. a The distribution of attribute values and sequence lengths, each point representing a sub-sequence. b The
distribution of sequence lengths. c The distribution of attribute values
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H.10 Low Correlation Coefficient

Fig. 46 The composition of low correlation coefficient. a The distribution of attribute values and sequence lengths, each point representing a
sub-sequence. b The distribution of sequence lengths. c The distribution of attribute values
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Appendix I: Experiments inChallengingSpace

I.1 Static Attributes

Fig. 47 Experiments in challenging space with static attributes. a–d The tracking results in different challenging factors. Each task is evaluated by
precision plot, normalized precision plot, and success plot with OPE mechanism
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I.2 Dynamic Attributes

Fig. 48 Experiments in challenging space with dynamic attributes. a–c The tracking results in different challenging factors. Each task is evaluated
by precision plot, normalized precision plot, and success plot with OPE mechanism
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Fig. 49 Experiments in challenging space with dynamic attributes. a–c The tracking results in different challenging factors. Each task is evaluated
by precision plot, normalized precision plot, and success plot with OPE mechanism
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Čehovin, L., Vojir, et al. (2017). The visual object tracking
VOT2017 challenge results, 1949–1972. https://doi.org/10.1109/
ICCVW.2017.230

Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R.,
Kämäräinen, J.-K., Danelljan, M., Zajc, L. Č., Lukežič, A., &
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